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Abstract
Urban junctions usually present significant safety concerns, and the majority of all crashes in urban areas occur in or near
junctions. Factors contributing to crash severity at junctions have been explored, but crash risk levels and crash severity pat-
terns of different junction types have hardly been investigated. In order to fill this gap, this study analyzed the safety perfor-
mance of six junction types and the factors contributing to crash severity, in order to assist city transportation authorities to
implement effective countermeasures. Fault tree analysis (FTA) was applied for the risk evaluation of urban junctions and
association rules (AR) algorithm was employed for the crash severity pattern analysis based on data from the U.K. STATS19
database from 2012 to 2016. Overall, four types of urban junctions with high crash risk level and over 4,000 AR contributing
to crash severity are identified in the present paper. The results show that: (a) roundabouts and mini-roundabouts have the
lowest fatality and casualty rates while T-junctions or staggered junctions and crossroads have the highest crash risk levels;
(b) FTA may produce inaccurate outcomes because of incorrect logic gates, but AR can generate real potential relationships
between crash severity and risk factors; (c) crash severity patterns are quite complex and the interdependence between risk
factors is different for each junction type; (d) risk factors such as male driver, no physical crossing facilities within 50 meters,
and give way or uncontrolled junction are common in high-risk junctions at night.

Overall road accident rates have been falling in the U.K.
in recent years due to the introduction of a national road
safety strategy (1). To reduce traffic casualties further,
transportation authorities maintain budgets for road
safety improvements, and prioritize spending on loca-
tions with high crash risk, such as urban junctions.
Previous studies have shown that urban junctions usually
arouse significant safety concerns, and crashes in urban
areas primarily occur in or near junctions (2). Yet differ-
ent types of urban junctions are constituted of different
geometric designs, sight distance conditions, and traffic
conflict points or angles, leading to different crash rates
and crash severity patterns. Accordingly, it is an essential
task of traffic safety analysts to analyze the safety perfor-
mance of junction types in terms of crash severity as well
as the factors contributing to high crash risk. Through
this task, more insights can be gained into the potential
causes of crashes at urban junctions, and effective coun-
termeasures can be taken for different junctions. It is
noteworthy that the crash risk is considered to be the
product of crash likelihood and crash severity in a risk

matrix (RM), which is the core conception of the present
study.

Fault tree analysis (FTA) is a well-established tech-
nique, which is applied broadly for evaluation of the
dependability of a wide range of systems, such as those
in the automotive, aerospace, and construction industries
(3–5). The logical connections between faults and their
causes are represented graphically in a fault tree, which
shows vividly the process of fault propagation through
the whole system. Recently, the basic components of
conventional FTA have been transferred from ‘‘fault’’ to
‘‘risk,’’ and FTA has been successfully introduced in risk
management (6, 7). Nevertheless, FTA still has a defi-
ciency in the manual definition of logic gates between
each event, especially in cases where the relationships

1School of Transportation Science and Engineering, Harbin Institute of
Technology, Harbin, China

Corresponding Author:
Address correspondence to Xianghai Meng: mengxianghai100@126.com

us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/0361198118822817
https://journals.sagepub.com/home/trr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0361198118822817&domain=pdf&date_stamp=2019-01-11


between risks are unknown at the outset. With the popu-
larity of artificial intelligence algorithms, AR analysis
offers a new perspective to explore the potential relation-
ships between crash severity and risk factors and to avoid
the bias caused by FTA.

The main aim of the present study is to investigate the
crash risk levels of six types of urban junctions and to
identify the significant risk factors that contribute to
crash severity at high-risk junctions. FTA and AR were
compared, and the shortcomings of conventional FTA in
risk analysis revealed. The crash severity patterns of
high-risk junctions were obtained by AR algorithm. A
better understanding of the crash severity patterns of
junctions can help not only to facilitate the introduction
of suitable countermeasures but also to explore safe driv-
ing strategies in an autonomous driving environment.
The present paper starts with a literature review, fol-
lowed by data description, methodology, results and dis-
cussion. The paper concludes with an overall summary
and recommendations for future research.

Literature Review

In the existing traffic safety literature, the studies that
model crash severity and investigate the significant fac-
tors of crash severity at urban junctions can be classified
into three categories: studies of (a) roundabouts, (b) T-
junctions and crossroads, and (c) other models of crash
severity.

The first group of studies aim to identify factors that
contribute to the crash severity as well as the safety effec-
tiveness of roundabouts. Montello (8) investigated the
factors contributing to crashes at urban roundabouts in
Italy: interdependence between factors was determined
using AR algorithm and it was found that the deviation
angle, markings, and signs have significant effects on the
safety of roundabouts. Daniels et al. (9) examined fac-
tors contributing to crash severity at roundabouts in
Flanders, Belgium. They concluded that severity of inju-
ries increases with the increase of drivers’ ages, and that
crashes at night and in built-up areas are more severe.
Gross et al. and Daniels et al. (10, 11) studied the
improvement in safety performance of converting signa-
lized intersections to roundabouts. The results of their
studies suggest that roundabouts can significantly reduce
both the number and severity of crashes.

The second group of studies, modeling the severity of
crashes at T-junctions or crossroads, link injury severity
with various risk factors in urban areas. It has been
found that motorcyclists are more vulnerable to injuries
than other vehicle drivers at T-junctions, and motorists
were more likely to violate the right-of-way rules on
non-built-up roads and in diminished light conditions
(12). Nitsche et al. (13) identified the critical pre-crash

scenarios at T-junctions and crossroads in an automated
driving system. They also adopted AR to reveal common
crash characteristics. Failure to give way, inappropriate
maneuvers, and high speed limits are found in the crash
data to be the main precipitating factors. Non-signalized
intersections usually have greater crash severity compared
with signalized junctions. The crash injury severity at three-
and four-legged non-signalized intersections in Florida was
analyzed by Haleem and Abdel-Aty (2) using multiple
methods. That study suggested that traffic volume, number
of left-turn movements, and young drivers are strongly
associated with fatalities and casualties at non-signalized
intersections. Thirdly, other literature has primarily focused
on diverse models of crash severity, which include: ordered
probit model (14), ordered logit model (15), mixed logit
model (16), and single contributory factors, such as age of
driver and lighting conditions (17, 18).

The present study contributes in the following four
ways. Firstly, it investigates the crash risk levels of six
junction types that have seldom been studied and the
interdependence between risk factors of crash severity.
Secondly, it compares FTA and AR, and points out the
shortcomings of FTA in risk management. Inaccurate
results of FTA may be generated due to incorrect logic
gates when the connection between each risk is initially
unknown. Thirdly, this study confirms the advantages of
AR analysis, which explores the underlying association
between risk factors and their different combination
forms in original datasets. Lastly, results yielded from
this study provide more insight into the crash severity
patterns of high-risk junctions at night, which can help
traffic engineers make more effective traffic safety
improvements within a limited budget.

Data

The open-access data, named the U.K. National Road
Accident Database (STATS19), applied in the present
study are provided by the U.K. Department for
Transport (19). STATS19 refers to the national road
crash database of casualties reported by the police on
any road in Great Britain. In STATS19, crash severity
falls into three levels: fatal, serious, and slight injuries
(for detailed definitions of the three crash severity levels,
see (12) ). The database consists of three files compiled
annually: accident file, vehicle file, and casualty file. In
this study, only accident and vehicle files were connected
according to the label ‘‘accident_index.’’ The accident file
contains the time and date of accident occurrence,
weather, light conditions, etc. The vehicle file records
vehicle and driver details, including driver’s age and gen-
der, vehicle maneuvers, etc.

This study focused on road crashes between two cars
(excluding motorcycle, taxi, minibus, bus, and van) at six
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types of urban junctions from 2012 to 2016. Over 80,000
car crashes that took place at urban junctions were
extracted from the database, and the total crash data of
every junction type during the five years were utilized for
the application of FTA and AR, as shown in Table 1.

Methodology

Fault Tree Analysis

FTA was first developed by H.A. Watson and M.A.
Mearns at Bell Labs for the analysis of a ballistic missile
in the 1960s. The classic handbook on FTA was published
by Vesely et al. in 1981 (20). FTA serves as a systematic
and well-understood method for the estimation of safety
and reliability of a complex system, both qualitatively and
quantitatively. It is a deductive analysis tool that proceeds
graphically from the occurrence of an undesired event to
the identification of the root causes of the event (21).
Generally, a fault tree, virtually a directed acyclic graph,
consists of two important components: events and gates.
An event is an occurrence within the system, typically the
failure of a subsystem down to an individual component,
and may be categorized as top event (TE), intermediate
event (IE), basic event, and undeveloped event. Gates rep-
resent how failures are transferred via the system and how
they affect the TE. There are four commonly used gates:
AND gates, OR gates, k/N gates and INHIBT gates (20).
A minimal cut set (MCS) is defined as the minimal set of
basic events which jointly are capable of making the TE
fail, which gives important information about the vulner-
abilities of a system (22).

Let the output event of logic gates, designated by X0,
and the input events of logic gates be X1 to XN , where N
denotes the number of inputs. When the connecting gate
is either AND or OR, the probability of the output event,
denoted as P X0ð Þ, is given by:

P X0ð Þ=

QN

i= 1

P Xið Þ, forANDgate

1#
QN

i= 1

1# P Xið Þf g, forORgate

8
>><

>>:
ð1Þ

In the present study, conventional FTA was applied
in the calculation of the probability of TEs (i.e., fatal
crash, serious crash, and slight crash) and the analysis of
the MCSs of each crash severity. FTA also permits the
theoretical relation between the crash severity (TE), the
risk categories (IEs) and the risk factors (basic events) to
be clarified on the basis of AND/OR logic, as shown in
Figure 1 (assuming that one crash is caused by human,
vehicle, road, and environment risk factors together).

Association Rules

AR is one of the most popular data mining techniques,
having been first introduced in 1993 for discovering buy-
ing patterns (23). In recent years, the AR method in data
mining has been successfully applied to uncover potential
patterns or rules in a variety of fields, such as, market
basket analysis (24), medical science (25), and traffic
safety (8).

AR analysis is the method of effectively identifying
sets of items that occur together in a given event. It is
based on the relative frequency of the number of times
the sets of items occur alone and jointly in a database. In
comparison with FTA, AR is characterized by short
operation time in big datasets and exclusive dependence
on datasets rather than the subjective evaluation of
human researchers. The ARs are formed as ‘‘A! B,’’
where A denotes the antecedent and B denotes the conse-
quent. It is worth mentioning that these rules should be
interpreted as associations (i.e., potential risk factors that
may cause a crash) between sets of items (i.e., crash data)
rather than a direct causation. Three measures for select-
ing rules in AR analysis are support, confidence, and lift.
Support is the percentage of specified cases in the data
that contain both A and B. Confidence is the percentage
of cases containing A which also contain B. Lift is the
ratio of confidence to the percentage of cases containing
B. The equations used to calculate these measures are as
follows:

Support A! Bð Þ=P A [ Bð Þ ð2Þ

Table 1. Summary of STATS19 data, 2012–2016

Junction type

Scenario 1: Daytime Scenario 2: Nighttime

2012 2013 2014 2015 2016 2012 2013 2014 2015 2016

Roundabouts 1334 2329 2419 2432 2455 523 850 767 745 691
Mini-roundabouts 259 412 472 471 464 105 200 185 186 141
T- or staggered junctions 4663 7979 8470 8752 5816 1518 2498 2550 2338 2122
Crossroads 1963 2881 2981 3176 2605 989 1317 1431 1332 1248
More than four arms 267 273 164 240 184 87 92 69 88 87
Other junctions 333 459 500 609 590 87 163 157 160 188
Total 65,952 22,914
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Confidence A! Bð Þ=P BjAð Þ ð3Þ

Lift A! Bð Þ= P BjAð Þ
P Bð Þ

=
Confidence A! Bð Þ

P Bð Þ
ð4Þ

where P $ð Þ is the probability or percentage of cases.
Apriori is a well-known AR algorithm which finds the

most frequent items and extends them to larger and
larger item sets, provided the number of appearances is
larger than the minimum support value (threshold) (13).
Thus, in this study, the Apriori algorithm was employed
for the analysis of crash severity AR, and the crash data
were transferred to Boolean type (i.e., 1 or 0) before
loading basic data into SPSS Clementine software (26).
To identify strong associations, threshold values for sup-
port (S), confidence (C), and lift (L) were set as follows:
S ø 30%,C ø 60%, and L ø 1. Rules with antecedent val-
ued as 0 were eliminated in the present study since they
are meaningless for the final results.

Risk Matrix

RM is a table with several categories of likelihood (or fre-
quency) for its rows and several categories of severity (or
consequence) for its columns (27). By mapping ‘‘likeli-
hood’’ and ‘‘severity’’ ratings to the corresponding risk

priority levels, the RM is conducive to assessing risks and
setting priorities to address potential hazards. It has been
used extensively in many engineering projects. In addi-
tion, not all traffic crashes can be eliminated at once, and
not all conceivable countermeasures are economically fea-
sible. Given this, by using RM, the safety performance of
different road infrastructure (i.e., road segments, tunnels,
intersections) can be simply and effectively evaluated, and
high-risk locations can be recognized by building a stan-
dard 3 3 3 crash risk matrix, as shown in Figure 2.

As shown in Figure 2, the crash risk increases with
higher crash severity and probability of crash. For instance,
when the crash severity is fatal and the probability of the
crash is higher than 0.6, the corresponding crash risk will
become the highest class, called ‘‘critical.’’ The RM was
constructed in the present study to evaluate the safety of six
junction types, and the junctions with relatively high risk
levels (i.e., medium, high and critical) should be addressed
by city transportation authorities.

Results and Discussion

Crash Risk Evaluation

Studies have already investigated different factors associ-
ated with car crash severity in urban areas. From the

Figure 1. Fault tree structure for crash severity at urban junctions (for details of basic events, see Table 2).
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literature review, 12 crash risks and 63 crash risk factors
were identified and grouped into four risk categories, as
listed in Table 2.

The FTA method was employed to calculate the total
probability of the TE (i.e., fatal, serious and slight crash),
and the RM was built to evaluate the safety performance
of different types of urban junctions in two scenarios
(i.e., daytime and nighttime), as shown in Table 3. The
profiles of TEs’ probability and crash risk levels for dif-
ferent urban junction types are listed in Table 3. FTA
was only employed in datasets with a sample size greater
than 200. When the sample size of data was less than
200, the probability of TEs was calculated by dividing
the number of crashes in one level of severity by the num-
ber of crashes in the three levels of severity at one junc-
tion type.

The results of the RM suggest that the average prob-
ability of all three crash severities is much lower in the
daytime than in the nighttime, and the average prob-
ability of crashes in the nighttime is 4.12 times that in
the daytime. This result may be attributed to the higher
speed of vehicles and poor light conditions at night
(35). Roundabouts and mini-roundabouts have the
lowest probability of all crashes compared with the
other five junction types, which is consistent with the
studies of Gross et al. (10). In brief, the ranking of high
crash risk level for urban junction types (top four high-
est risk levels) is: T- or staggered junction, crossroads,
junction with more than four arms, and other junc-
tions. The relatively high crash risk of T- and staggered
junctions and crossroads is presumably attributed to
poor sight distance conditions and more conflict points
(35).

Comparison between FTA and AR

Based on the risk factors identified in Table 2, FTA and
AR were employed to explore the contributory risk fac-
tors of four junction types with high risk level (i.e., T- or
staggered junction, crossroads, junctions with more than
four arms, and other junctions) at night. High crash risk
factors of each category with the top five MCSs’ prob-
abilities in FTA and the top five support (%) in AR were
selected for the comparison. The results of FTA and AR
are quite different from each other, though there are
some common high risk factors, as shown in Table 4.

As the logic gates of the FTAwere different from the real
risk factors combinations in the original datasets, the high
risk factors identified by FTA were all four-factor combina-
tions in each of the MCSs, and only one factor with the
highest frequency in each of the risk categories can be
selected. In comparison with FTA, AR has the advantage
of dependence on datasets, which avoids incorrect subjective
understanding from human researchers. It is surprising to
find that the high risk factors identified by AR were fairly
complicated. For instance, there were one-factor, two-fac-
tor, three-factor, and four-factor combinations in the AR
with high degrees of support, confidence, and lift.

The disadvantage of FTA can be observed from the
obvious differences between results of FTA and AR. In
conventional FTA, the basic event is normally a ‘‘fault’’
in the system, and the relationship between each basic
event must be known at the outset. However, when FTA
is applied in risk management, the basic event is a ‘‘risk’’
rather than a ‘‘fault,’’ and the real relationship between
each of the risks is mostly unknown when building the
fault tree structure. Therefore, the logic gates of FTA can
be ‘‘noisy,’’ meaning they have a chance of failure (22).
For instance, the crash risk of male driver, the crash risk
combination of male driver and give way junction, or
other combinations of crash risk factors are all likely to
cause a serious crash in a T- or staggered junction, which
is difficult to be expressed in the logic gates of FTA.

Crash Severity Pattern Analysis

To generate AR among the crash severity and contribu-
tory risk factors in high-risk junctions at night, the
Apriori algorithm was used in the present study. The
association algorithm identified over 4,000 rules with sup-
port greater than 30%, confidence greater than 60%, and
lift greater than one. Among these rules, only the top ten
support values in each junction type were selected for the
crash severity pattern. The result of the selected AR was
the crash severity, thus providing statistical evidence that
different crash severities of various junction types are
dependent on different contributory risk factors (8).

Figure 2. Crash risk matrix (green, yellow, orange, and red
squares indicate low, medium, high, and critical risk levels).
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Table 2. Identification of Potential Risks of Crash Severity at Urban Junctions

Crash risk categories Crash risks Crash risk factors Sources

A:
Human factors

A1: Age of driver A11: Young driver (age 16–20) Paleti et al. (28),
Daniels et al. (9)A12: Middle-aged driver (age 56–65)

A13: Old driver (age over 66)
A2: Sex of driver A21: Male

A22: Female
Fountas et al. (14),
Bogue et al. (15),
Jiang et al. (29)

A3: Maneuver type A31: Reversing
A32: Parked

Haleem and Abdel-Aty (2)

A33: Waiting to go – held up
A34: Slowing or stopping
A35: Moving off
A36: U-turn
A37: Turning left
A38: Waiting to turn left
A39: Turning right
A40: Waiting to turn right
A41: Changing lane to left
A42: Changing lane to right
A43: Overtaking moving vehicle –

offside
A44: Overtaking static vehicle – offside
A45: Overtaking – nearside
A46: Going ahead left-hand bend
A47: Going ahead right-hand bend

Sobhani et al. (30),
Daniels et al. (9)

A48: Going ahead other
B:
Vehicle factors

B1: Skidding and
overturning

B11: Skidded
B12: Skidded and overturned
B13: Jackknifed
B14: Jackknifed and overturned
B15: Overturned

Castro et al. (31), Jiang et al. (29)

B2: Age of vehicle B21: Vehicle age (5–9 years)
B22: Vehicle age (over 10 years)

Chen et al. (32)

B3: Vehicle location B31: Approaching junction or waiting/
parked at junction approach

B32: Cleared junction or waiting/
parked at junction exit

B33: Leaving roundabout
B34: Entering roundabout

Chen et al. (32),
Jiang et al. (29)

B35: Mid-junction, on roundabout or
on main road

C:
Road factors

C1: Junction control C11: Authorized person
C12: Auto traffic signal
C13: Stop sign
C14: Give way or uncontrolled

Gross et al. (10)

C2: Pedestrian facilities C21: No physical crossing facilities
within 50 meters

C22: Zebra crossing
C23: Pelican, puffin, toucan or similar

non-junction pedestrian light crossing
C24: Pedestrian phase at traffic signal

junction

Ravishankar and Nair (33)

C3: Road surface C31: Wet or damp Montella (34)
Conditions C32: Snow

C33: Frost or ice
C34: Flood over 3 cm deep

Fountas et al. (14)

D:
Environment factors

D1: Light conditions D11: Nighttime – lights unlit
D12: Nighttime – no lighting
D13: Nighttime – lighting unknown

Sasidharan and Donnell (35)

(continued)
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Figure 3 shows the one-factor, two-factor, three-fac-
tor, and four-factor rules, along with their degree of sup-
port (the values of confidence and lift are all greater than
one, so they are omitted from the figure). According to
this result, we confirm that AR allows a better assess-
ment of the interdependences among the crash risk fac-
tors than FTA. For each type of junction, one color of
circle represents a high risk factor and each overlapping
area means that several factors cause the crash jointly.
Crash severity pattern can be seen as different combina-
tions of crash risk factors, which includes one-factor,
two-factor and multiple-factor rules. These combinations

are in different proportions to the total crash number of
each level crash severity at a particular junction type.

The three most frequent risk factors in all high risk
level junctions at night are: {Sex_of_driver = Male},
{Pedestrian_facilities = No physical crossing facilities
within 50meters}, and {Junction_control = Give way or
uncontrolled}, as shown in Figure 3. This suggests that
these risk factors are strongly correlated with the occur-
rence of crash casualties at urban junctions. Consistent
with previous research (14), this result shows that male
drivers are more likely to cause serious crashes than
female drivers, because the majority of vehicle drivers

Table 2. (continued)

Crash risk categories Crash risks Crash risk factors Sources

D2: Special conditions at site D21: Auto traffic signal out
D22: Auto signal part defective
D23: Road sign or marking defective

or obscured
D24: Roadworks
D25: Road surface defective
D26: Oil or diesel
D27: Mud

Montella (34)

D3: Weather conditions D31: Raining no high winds
D32: Snowing no high winds
D33: Fine and high winds
D34: Raining and high winds
D35: Snowing and high winds
D36: Fog or mist

Jiang et al. (29)

Table 3. Crash Risk Evaluation of Urban Junctions in U.K. between 2012 and 2016

Junction type Crash severity

Scenario 1: Daytime Scenario 2: Nighttime

Probability Risk level Probability Risk level

Roundabouts Fatal 0.001 Low 0.000 Low
Serious 0.086 Low 0.220 Low
Slight 0.096 Low 0.217 Low

Mini-roundabouts Fatal 0.001 Low 0.002 Low
Serious 0.075 Low 0.032 Low
Slight 0.118 Low 0.239 Low

T- or staggered junctions Fatal 0.002 Low 0.030 Low
Serious 0.084 Low 0.759 High
Slight 0.095 Low 0.629 Medium

Crossroads Fatal 0.001 Low 0.003 Low
Serious 0.076 Low 0.806 High
Slight 0.108 Low 0.338 Low

More than four arms Fatal 0.014 Low 0.000 Low
Serious 0.116 Low 0.057 Low
Slight 0.128 Low 0.778 Medium

Other junctions Fatal 0.001 Low 0.000 Low
Serious 0.072 Low 0.062 Low
Slight 0.110 Low 0.760 Medium

Average probability of crashes 0.066 - 0.272 -

Note: Bold font indicates that the crash risk level of junction type is relatively high.

Wu et al 7
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are men and they are more likely to engage in dangerous
driving behaviors, such as overtaking, excess speed, and
drink driving. When there are no physical crossing facili-
ties in junctions, drivers tend to go at higher speed with-
out taking special notice of crossing pedestrians. In
addition, if the junction control is ‘‘give way’’ or it is

uncontrolled, then there will be more conflict points and
chaotic traffic than with traffic signal control method
(2).

It is worth noting that young driver (aged between 16
and 20) is the major risk factor for serious crashes in T-
or staggered junctions at night, with degree of support

Figure 3. Crash severity pattern of urban junction types with high risk level (the area of circles denotes the degree of support).

Wu et al 11



even reaching 100%. This result can probably be attrib-
uted to aggressive or risky driving behaviors and lack of
driving experience of young drivers (28). It is clear that
{Sex_of_driver = Male}, {Vehicle_location = Mid junc-
tion}, and {Maneuver_type = Going ahead other} are
the three critical risk factors of serious crashes at cross-
roads. Since the middle area of a crossroads is the loca-
tion with biggest crash exposure, and overtaking
behaviors will increase the possibility of vehicle collision,
the combination of these three factors will cause severe
crashes at crossroads at night (29).

Besides, the combination forms of risk factors in each
junction type are quite complex and they are different
from each other. It reminds us that different safety
improvement measures should be taken in accordance
with the types of urban junctions. Through the analysis
of the crash severity patterns of high-risk junctions, traf-
fic management authorities can have better awareness of
potential crash risks in different urban junctions and
make effective countermeasures (e.g., introduce traffic
signal systems in uncontrolled junctions; prohibit over-
taking in junctions) in high-risk junctions.

Conclusion

In the present study, FTA was applied to evaluate the crash
risk level of six urban junction types (both in daytime and
nighttime scenarios) in the U.K. Next, from data mining
technology, AR analysis was employed to investigate the
contributory factors and crash severity patterns of high-risk
junctions. By comparing the high risk factors identified by
FTA and AR, the shortcomings of conventional FTA were
highlighted, as the wrong logic gates of FTA will generate
some misleading and inaccurate results in risk management.
Therefore, the use of AR was recommended for the analysis
of the potential risk factors associated with crash severity.
Finally, the Venn diagram of crash severity patterns pro-
vided more understanding of the interdependence between
risk factors for researchers and traffic engineers. To sum up,
the following conclusions can be drawn:

% The average probability of crashes in the nighttime
is much higher than that in the daytime under the
use of FTA to calculate the occurrence probability
of TEs.

% Among six types of urban junctions, roundabouts
and mini-roundabouts have the lowest fatalities
and casualties. T- or staggered junctions, cross-
roads, junctions with more than four arms, and
other junctions, have relatively high crash risk lev-
els. Especially, T- or staggered junctions and
crossroads have highest crash risk.

% AR has the advantage of exploring potential crash
risk in original data, and avoiding the inaccurate

results caused by logic gates in FTA. The high
crash risks of each junction type are quite compli-
cated, because one-factor, two-factor, and
multiple-factor combinations make up different
percentages of all crash data, and the relationship
between risk factors is difficult to express by the
logic gates of FTA.

% Urban junctions with high risk levels have differ-
ent crash severity patterns. Risk factors including
male driver, no physical crossing facilities within
50meters, and give way or uncontrolled junction,
are common in all high-risk junctions, and they
will increase the crash severity in urban junctions.
Other risk factors including young drivers (age
between 16 and 20), mid-junction location and
overtaking also should be addressed by traffic
management administrations.

In conclusion, junctions are the high crash risk parts
of a city road network, and different types of junctions
have unique characteristics and special crash severity
patterns. When the FTA method is applied in risk eva-
luation, incorrect logic gates may produce misunder-
standing of results, especially when the relationship of
each risk is unknown at the outset. Therefore, the AR
algorithm is a good way to overcome the disadvantages
of conventional FTA. It has been proven to generate
more objective results of risk factors in the present study
and has a huge potential to be effectively used in big
datasets. In the near future, the application of AR in
other safety research topics (e.g., real-time crash risk eva-
luation, safety issues of autonomous vehicles) is quite
promising, and the determination of parameters of AR
could be further investigated. Because the STATS19
dataset is lacking other important information about
crashes, more studies are needed to emphasize more
micro-level and detailed potential risk factors of junc-
tions, including aggressive driving behavior, traffic vol-
ume, and vehicle speed. When it comes to the safety
evaluation of urban junctions in developing countries,
such as China and India, the first priority is to build a
national crash database, as developed countries have
done. Many minor crashes are usually unreported in
developing countries, which affects the final results of
any crash risk analysis. Therefore, the real crash risk
level maybe higher than the analyzed crash risk level in
developing countries. Unlike developed countries, there
are multiple modes of transport on the road in develop-
ing countries, so safety issues of urban junctions in devel-
oping countries remains a field for further research.
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