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A novel ensemble learning method for crash prediction
using road geometric alignments and traffic data

Peijie Wu, Xianghai Meng, and Li Song

School of Transportation Science and Engineering, Harbin Institute of Technology,
Heilongjiang, China

ABSTRACT
As an important part of traffic safety analysis, crash prediction
models using road geometric alignments and traffic data
(CPM-GAs) have been regarded as the most classic way and
can be used in stages of road safety evaluation and road
operating and management. To improve the predictive per-
formance of tradition CPM-GAs and avoid the overfitting prob-
lem of machine learning algorithms, a framework of CPM-GA
based on ensemble learning theory and a new ensemble rule
for connecting traditional models and machine learning mod-
els were proposed in this study. Results of the ensemble learn-
ing CPM-GA show that (1) classification and regression tree
(CART) is recommended for important variable selection pro-
cedure before applying support vector machine (SVM), (2)
machine learning models outperformed traditional models sig-
nificantly in aspects of model fitting and prediction accuracy
but are unstable in the sensitivity tests, (3) the new proposed
ensemble method of traditional model and machine learning
model can effectively improve the accuracy of traditional
CPM-GAs by 10%–16% and reduce the variance of machine
learning CPM-GAs by 12%–36% simultaneously. Finally, the
ensemble method presented in this article may shed light on
more research of crash prediction models based on ensemble
learning theory.
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1. Introduction

In the advent of rapid economic growth and huge travel demand of China,
national highway network plan (NHNP) was officially proposed in 2013
(Traffic Management Bureau of Ministry of Public Security, 2013).
However, when the large-scale freeway network offers convenience and effi-
ciency, it is also associated with increased crash frequency. There were
8,693 crashes occurring on freeways in China, of which 4.38% were
reported to police (Traffic Management Bureau of Ministry of Public
Security, 2014). Therefore, improving traffic-safety level of freeways in
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China is becoming the first priority for Chinese freeway management
department. To accomplish this goal, traffic safety improvements need to
be conducted in high-risk freeway segments. As the core of traffic safety
analysis, accurate and effective crash prediction models (CPMs) are in
need. Crash prediction models using road geometric alignments and traffic
data (CPM-GAs) are the most classic type of CPMs, which can be used in
road safety evaluation stage and road operating and management stage.
The most widely used CPM-GA in road safety evaluation is interactive
highway safety design model (IHSDM) developed by AASHTO (2010).
Although some researchers are more interested in the CPMs in road oper-
ating and management stage under real-time environment (Basso et al.,
2018; Ba et al., 2017), the CPMs based on historical crash data and road
geometric alignments are also very valuable to study, especially building
CPM-GAs to predict annual crash number for target years.
The main purpose of this study is to examine a novel ensemble method

for crash prediction by using road geometric alignments and traffic data to
improve the predictive performance of tradition CPM-GAs and avoid the
overfitting problem of machine learning algorithms. To be specific, the trad-
itional CPM-GAs and machine learning CPM-GAs were combined to form
more stable and more accurate CPM-GAs by using the new proposed
ensemble rule. This study may contribute to current studies in the following
four aspects. First, seven basic CPM-GAs (three traditional CPM-GAs and
four machine learning CPM-GAs) were compared according to the model
fitting and prediction accuracy, which had been rarely investigated in previ-
ous studies. Second, the sensitivity test of seven basic CPM-GAs was con-
ducted, and the unstable characteristic of machine learning models was
revealed in comparison with tradition models. Third, this study provided a
new ensemble method of tradition CPM-GAs and machine learning CPM-
GAs, which are believed to be beneficial for the final results of ensemble
learning model. Fourth, the connecting “bridges” between tradition models
and machine learning models were built in this study, which may shed light
on more researches of CPMs in the ensemble learning framework.

2. Previous works

Various CPMs have been developed to date and can basically be divided
into two categories: traditional methods and machine learning methods.
The statistical models are the representation and the most popular
approach of tradition CPMs, including Poisson, negative binomial (NB),
Poisson-lognormal, zero-inflated Poisson (ZIP) and zero-inflated negative
binomial (ZINB), generalized estimating equation (GEE), and various
Bayesian models (Lord and Mannering, 2010). Recently artificial
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intelligence technology is gaining momentum around the world, more and
more researchers are getting interested in building CPMs by using support
vector machine (SVM) (Ren and Zhou, 2011; Dong et al., 2015; Yu and
Abdel-Aty, 2013), artificial neural network (ANN) (Zeng et al., 2016a; Zeng
et al., 2016b), classification and regression tree (CART) and random forest
(RF) (Wang et al., 2015). As a matter of fact, traditional CPMs can help
researchers to be aware of the relationship between crash and crash-related
factors but are only suitable for relative small size data not practical for big
data or real-time data. Although machine learning CPMs have the problem
of instability and overfitting, they always have higher prediction accuracy
and efficiency than traditional CPMs. Therefore, the traditional CPMs and
machine learning CPMs can be seem as two complementary methods and
have their own strengths and weaknesses.
Among numerous types of CPMs, CPM-GAs are the most classic model-

ing method because traffic flow and road geometry have for years been rec-
ognized as contributing factors of crashes. Miaou (1994) studied the
relationship between highway geometrics and accidents using NB models
and found that NB regression models are more appropriate in instances
where data are overdispersed. Milton and Mannering (1998) analyzed the
relationship between annual accident frequencies and highway geometric
and traffic characteristics by applying NB models. They concluded that the
NB model is a powerful predictive tool. However, IHSDM has become the
most popular CPM-GA after the publishing of Highway Safety Manual
(AASHTO, 2010). Many studies made efforts to calibrate the crash predic-
tion module of IHSDM and evaluate its transferability in different coun-
tries, such as the United States (Turner et al., 2012) and Canada (Persaud
et al., 2012). Bauer and Harwood (2014) evaluated the safety effects of the
combination of horizontal curvature and longitudinal grade on rural two-
lane highways. CPMs for fatal-and-injury and property-damage-only
crashes were built, and CMFs of five combinations of horizontal and verti-
cal alignments were developed. Nevertheless, only a few studies utilized
machine learning methods or other new methods to build CPM-GAs.
Ensemble learning (EL) method, which means the combination of mul-

tiple base models to form a stronger ensemble model, has been the state-
of-the-art technology in machine learning field in recent years (Chen et al.,
2017). Studies have shown that the EL can effectively improve models’ pre-
diction, generalizability, and robustness over a single model (Krawczyk
et al., 2017). However, the concept was seldom applied or investigated in
the traffic safety field. This study is expected to fill the gap by building
ensemble learning CPM-GAs based on EL theory, and combing traditional
CPM-GAs and machine learning CPM-GAs to form a higher accuracy
model and stability model in the framework of EL.
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2. Data preparation

2.1. Data

Data for this study were collected from 1,976 road segments with a total
length of 371.4 km in length located on the following three freeways in
China: Jingzhu Freeway, Kaiyang Freeway, and Yuegan Freeway. A total
number of 3,970 crashes from 2009–2012 occurred on these freeways were
collected. The data included crashes, traffic volumes (e.g., Annual Average
Daily Traffic [AADT]), and geometric design characteristics.
The crash data were obtained from the Guangdong Provincial Freeway

Administration (GDFA). Freeway geometric design data containing detailed
road geometric characteristics were obtained from the Guangdong
Provincial Communications Survey and Design Institute. First, the crash
data were linked to the corresponding freeway segments with the help of
kilometer markers. Next, road segments where there are toll station, tunnel,
and bridges were eliminated. Then, three freeways were divided into homo-
geneous road segment, and each homogeneous road segment ends up with
the minimum road unit according to their horizontal and vertical design
geometric alignments (such as horizontal curves, transition curves, and tan-
gents). To reduce the influence of black spots on the model prediction per-
formance, the homogeneous road segments with anomalous crash
frequency were removed by using the 3r method (Francesca, Mariarosaria,
& Gianluca, 2016). Finally, the data of basic road segments were extracted
in this study. In addition, data are divided into three categories according
to its location in different terrains (e.g., mountainous region, plain region,
and mountainous hilly region). The descriptive statistics of variables are
presented in Table 1.

2.2. Data normalization

Data normalization can improve the data fitting as well as prediction per-
formance and is required for SVM and back propagation neural network
(BPNN) models. The normalization was accomplished using the following
equation in BPNN model (Li et al., 2008):

xni ¼ xi �min xið Þð Þ= max xið Þ �min xið Þð Þ (1)

Where, xi is the variable i; minðxiÞ is the minimum value of variable i;
max xið Þ is the maximum value of variable i: The function “scale” in sklearn
package of Python software (F. Pedregosa et al., 2011) was used before
applying SVM models in this study for standardizing data to the data with
the average value is 0 and the Standard Deviation is 1.
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2.3. Model fitting and prediction performance index

Mean absolute deviation (MAD) and mean squared predictor error (MSPE)
proposed by Oh et al. (2003) were adopted to evaluate the model fitting
and prediction performance. The measures of effectiveness (MOEs) are as
follows (Oh et al., 2003):

MAD ¼ 1
n

Xn
i¼1

ŷi�yij j (2)

MSPE ¼ 1
n

Xn
i¼1

ŷi�yi
� �2 (3)

Where, n is the size of fitting or predicting sample, ŷi is the estimated
number of crashes of road segment i; and yi is the observed number of
crashes. The crash prediction model performance is better if the values of
MAD and MSPE are smaller.

Table 1. Summary statistics of variables
Category Variables M SD Minimum Maximum

Mountainous
region

Response variable
Number of crashes in four years (crashes) 1.865 1.174 1 8
Road characteristics
Length of segment (km) 0.174 0.108 0.051 0.845
Traffic characteristics
AADT (pcu/day) 11761 2128 7465 14207
Road geometric design
Horizontal curve radius (km) 1.417 1.530 0 0.800
Absolute value of deflection angle (degree) 26.614 21.210 0 100.692
Vertical curve radius (km) 12.107 16.162 0 200
Slope gradient (%) 0.429 2.465 �5 5
Slope length (km) 0.928 0.509 0.340 3.200

Plain region Response variable
Number of crashes in four years 2.064 1.270 1 6
Road characteristics
Length of segment (km) 0.263 0.173 0.053 1.098
Traffic characteristics
AADT (pcu/day) 21942 1679 17601 25085
Road geometric design
Horizontal curve radius (km) 2.626 2.747 0 8
Absolute value of deflection angle (degree) 18.025 17.641 0 72.028
Vertical curve radius (km) 19.271 23.960 0 150
Slope gradient (%) �0.001 0.920 �2.910 2.800
Slope length (km) 0.843 0.299 0.400 2

Mountainous
hilly region

Response variable
Number of crashes in four years 2.096 1.466 1 7
Road characteristics
Length of segment (km) 0.232 0.137 0.056 1.197
Traffic characteristics
AADT (pcu/day) 14124 2707 11078 19913
Road geometric design
Horizontal curve radius (km) 2.280 2.746 0 9.800
Absolute value of deflection angle (degree) 24.779 21.444 0 86.043
Vertical curve radius (km) 15.833 27.387 0 300
Slope gradient(%) �0.092 2.019 �4 4
Slope length (km) 0.653 0.324 0.146 1.728

Note. AADT ¼ Annual Average Daily Traffic; pcu ¼ passenger car unit.
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To evaluate the prediction accuracy and stability of ensemble learning
model, two evaluation criteria were proposed in this study, including rela-
tive error change (REC) and relative variance change (RVC). The formulas
of the two indexes are described as follows.

REC ¼ MAD2 �MAD1ð Þ=MAD1 (4)

RVC ¼ Variance2 � Variance1ð Þ=Variance1 (5)

Where, MAD1 is the MAD of the traditional CPM, MAD2 is the MAD of
the ensemble learning CPM, REC is the relative error change, unit is %,
Variance1 is the variance of predicted results by machine learning CPM,
Variance2 is the variance of predicted results by ensemble learning CPM,
and RVC is the relative variance change, unit is %. The ensemble learning
model prediction accuracy is higher when REC is negative value, and the
ensemble learning model stability is higher when RVC is negative value.

3. Methodology

3.1. Base model of ensemble learning: negative binomial regression

NB model assumes that the Poisson parameter follows a gamma distribu-
tion and NB regression model is usually given by the following (Miaou,
1994):

Prob Yi ¼ yið Þ ¼ C yi þ /ð Þ
C yi þ 1ð ÞC /ð Þ

li
li þ /

� �yi /
li þ /

� �/

(6)

Expectation of Yi is li ¼ g xið Þ (7)

Variance of Yi is Var Yið Þ ¼ li þ
l2i
/

(8)

Where, yi is the crash number of road segment i; Yi is the dependent ran-
dom variable following a NB distribution with the inverse dispersion par-
ameter /; xi is the explanatory variables which related to crash at road
segment i; and gðxiÞ is the link function for the model. In this study, gðxiÞ
is described as follows:

li ¼ AADTi � Lið Þ exp b0 þ b1HCi þ b2HDi þ b3VCi þ b4SGi þ b5SLið Þ
(9)

Where, AADTi is the annual average daily traffic for segment i; Li is the
length of segment in meter, HCi is the horizontal curve radius for segment
i; HDi is the absolute value of deflection angle of horizontal curve for seg-
ment i; VCi is the vertical curve radius for segment i; SGi is the slope
grade of segment i; SLi is the slope length of segment i; and
b0; b1; b2; b3;b4; b5 are regression coefficients.
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3.2. Base model of ensemble learning: IHSDM model

IHSDM (IHSDM-US) was first developed in the United States and has
been widely used to evaluate the safety performance of highway design
alternatives. The CPMs in this software are described as follows:

Npredicted ¼ NSPFx � CMF1x � CMF2x � � � � � CMFyxð Þ � Cx (10)

Where, Npredicted is the predicted crash frequency on site type x(crashes/
year), NSPFx is the predicted average crash frequency determined for base
conditions with the SPF representing site type x (crashes/year), CMFyx is
the crash modification factors specific to site type x and variable y to study
that can affect crash frequency, and Cx is the calibration factor to adjust
the site type x for local conditions.
However, the real traffic environment and the road design standard are

quite different between the United States and China, Hou (2014) developed
the IHSDM (IHSDM-China) model for China and developed three SPFs
for different terrain conditions (for more detail about the calculation of
CMFs in IHSDM-China, please refer to Hou, 2014).

3.3. Base model of ensemble learning: Back propagation neural network

BPNN is the most popular and widely used algorithm for artificial neural
network. Firstly, the output of hidden layer is calculated as (McClelland
and Rumelhart, 1986):

Hj ¼ f
Xn
i¼1

xijxi � aj

 !
j ¼ 1; 2; . . . ; l (11)

Where, Hj and f are the output of hidden layer and the incentive function
of neurons, l is the neuron number of hidden layer, n is the neuron num-
ber of the input layer, xij is the weight factor between input-layer and hid-
den layer, aj is threshold value. Secondly, predicting value of the output
layer is calculated as (McClelland and Rumelhart, 1986):

Ok ¼
Xl
j¼1

Hjxjk � bk k ¼ 1; 2; . . . ;m (12)

Where, bk is threshold value, m is the neuron number of the output layer.
Then according to the prediction error ek calculated by the difference
between predicted output and expected output, weight factor and threshold
value are updated. Finally, the cycle of training calculation is judged by the
termination conditions. In this study, the MATLAB software (The
MathWorks, 2007) was used to build the BPNN. The specified parameter
settings are as follows: input variable is road geometric alignments and
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AADT, output is crash number; number of input is 4, number of output is
1, the number of hidden layer is 9, hidden layer function is sigmoid, output
layer function is linear, maximum number of epoch is 1000, learning rate
is 0.05, and accuracy is 0.0001 (the hidden layer units number is deter-
mined by the empirical equation, please refer to Hunter, Yu, Pukish,
Kolbusz, & Wilamowski, 2012).

3.4. Base model of ensemble learning: support vector machine

SVM is a pattern recognition method based on statistical learning theory
(Cortes and Vapnik, 1995). Assume the training input is defined as vectors
xðiÞ 2 Rln for i ¼ 1; . . . ;N; representing the important road geometric
alignments variables and AADT. The training output is defined as yðiÞ 2
R1 for i ¼ 1; . . . ;N; representing the crash frequency of roadway segments.
The SVM maps xðiÞ into a feature space Rhðh > InÞ with higher dimension
using /ðx ið ÞÞ to linearize the nonlinear relationship between xðiÞ and yðiÞ:
Estimation function of yðiÞ is

ŷ ¼ f xð Þ ¼ wT/ xð Þ þ b (13)

Where, w 2 Rh and b 2 R1 are coeffcients. The coefficients are derived by
solving the following optimization problem (Cortes and Vapnik, 1995).

MinZ w; e; n; n�ð Þ ¼ 1
2
wTwþ C meþ 1

N

XN
i¼1

ni þ n�i
� �( )

(14)

subject to

wT; x ið Þð Þ þ b� y ið Þ � eþ ni 8i ¼ 1; . . . ;N (15)

y ið Þ�wT; x ið Þð Þ � b � eþ n�i 8i ¼ 1; . . . ;N (16)

e � 0 (17)

Where, ni; n
�
i are slack variables; C is a regularization parameter, and m is a

second parameter, e is the allowable error of each xðiÞ: Slack variables ni;
n�i capture errors above e and are penalized in the objective function
through a regularization constant C: In this study, the SVM model with
RBF kernel was built by Python (F. Pedregosa et al., 2011), and the grid-
searching algorithm was used to find the best parameters. The settings are
as follows: C is 1,10,100,1000 and gamma is 0.04, 0.2, 1, 5, 25.

3.5. Ensemble learning framework

EL, a state-of-the-art technology, has attracted growing attention in
machine learning community (Polikar et al., 2012). EL combines the
strengths of a pool of many simple base models to build a more robust
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combined model with higher prediction accuracy. According to “no free
lunch” theorem (Wolpert, 2001), there is not a single classifier that is
appropriate for all tasks because each algorithm has its own domain of
competence. In this study, the framework of ensemble learning is shown in
Figure 1.
The proposed ensemble learning approach to predict crash frequency in

this study is different from existing ensemble learning methods:

� Different data processing. This study didn’t use bagging or bootstrap-
ping to randomly select data sets for base learners (Saha, Alluri, & Gan,
2015), because there is no distinct difference between these methods in
this dataset.

� Different base learners. Traditional methods and machine learning
methods were used as base learners in this framework, instead of only
machine learning methods were adopted.

� Different evaluating indexes. Two evaluation aspects of crash predic-
tion, model prediction accuracy and sensitivity test, were be taken into
consideration for CPM-GAs for testing the transferability.

� Different ensemble rules. Different from the current ensemble learning
rules, the new ensemble method was proposed to modify IHSDM model
by using adjusting factor. The upper and lower bounds were set for
controlling SVM’s stability. The new ensemble rule can be expressed as
the following formulas:

Figure 1. The framework of the proposed ensemble-learning for building crash predic-
tion model.
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Cx ¼ ySVMx

yIHSDMx

(18)

Where, Cx is the adjusting factor (new proposed concept, not the calibra-
tion factor of AASHTO) of IHSDM model in the terrain type x; ySVMx is
the average predicted crash rate of IHSDM model in the terrain type x;
yIHSDMx is the average predicted crash rate of SVM model in the terrain
type x: This adjusting factor is used for capturing the other underlying and
unobserved crash-related factors (e.g., weather, dangerous behavior of driv-
ers) and modifying the original predicted results to local conditions.

y0IHSDMi
¼ yIHSDMi � Cx; i ¼ 1; 2; . . . ; n (19)

Where, i is the road segment, y0IHSDMi
is the predicted crash rate of road

segment i by modified IHSDM model, and yIHSDMi is the predicted crash
rate of road segment i by original IHSDM model.

sup ySVMið Þ ¼ y0IHSDMi
þ 0:25� y0IHSDMi

(20)

inf ySVMið Þ ¼ y0IHSDMi
� 0:25� y0IHSDMi

(21)

Where, sup ySVMið Þ is the upper bound of road segment i for SVM model,
inf ySVMið Þ is the lower bound of road segment i for SVM model, and ySVMi

is the predicted crash rate of road segment i for SVM model. Setting upper
and lower bounds for SVM model can be useful to avoid abnormal predict
crash value (e.g., very high crash rate) in original SVM model. Besides,
75%-125% was chosen for the change interval of modified results of
IHSDM, which should be further discussed and verified in the future study.

yensemblei ¼
sup ySVMið Þ; y0SVMi

>sup ySVMið Þ
ySVM; inf ySVMið Þ � y0SVMi

� sup ySVMið Þ
inf ySVMið Þ; y0SVMi

<inf ySVMið Þ

8<
: (22)

Where, yensemblei is the predicted crash rate of road segment i by ensemble
learning method.

yIHSDMi ; ySVMi ; y0IHSDMi
; yensemblei � 0 (23)

All predicted crash rate of road segment i by IHSDM model, SVM
model, modified IHSDM model and ensemble learning model should be
nonnegative number. The unit of crash rates is crashes per year per km.

4. Modeling results and discussion

4.1. Important variables selection results

CART and RF can be used as precursor to a more detailed regression
model (Yu and Abdel-Aty, 2013). The importance of each variable is based
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on Gini node purity, and a higher node purity value represents a higher
variable importance (for more details about it, please refer to Breiman,
2001, and Wang et al., 2015). The response variable is crash number, and
the predictor variables are five geometric alignments indexes (i.e., slope
gradient, absolute value of deflection angle, slope length, vertical curve
radius, and horizontal curve radius). It is worth mentioning that AADT is
the important predictor variable, which is not considered in the important
variable selection procedure. Due to the limitation of the original data of
this study, the variables that are used for selecting important variables are
not very ideal, and more road geometric alignment variables are suggested
to be included in this procedure in the future studies. The settings in
CART are as following: splitting criterion: Gini; maximum depth: 10, min-
imum leaf size: 10, minimum split size: 20. And the settings in RF are as
following: bootstrap¼ true; criterion is mean square error, the number of
tree is 100. Table 2 shows the importance of variables returned by CART
and RF.
As is shown in Table 2, it is surprisingly found that the important varia-

bles chose by CART and RF are the same for freeways in mountainous
region and plain region but are different for freeways in mountainous hilly
region. This difference is presumably attributed to the different internal
configurations of CART and RF algorithms (e.g., RF builds multiple deci-
sion trees and votes to make the final results). In fact, the slope gradient is
the main factors that will greatly affect the crash rate in mountainous
region because the maximum slope gradient even reaches 5%, and the gra-
dient of 78 percentage of road segments is between –3% and 3%.
Deflection angle is the major cause for mountainous region and

Table 2. Important variable selection results by Classification And Regression Tree (CART) and
Random Forest (RF)

Category Selected important variables

Importance of variables

CART RF

Mountainous region Slope gradient (%) 0.432a 0.388a

Absolute value of deflection angle (degree) 0.265a 0.154a

Slope length (m) 0.133a 0.243a

Vertical curve radius (m) 0.099 0.120
Horizontal curve radius (m) 0.072 0.094

Plain region Vertical curve radius (m) 0.303a 0.290a

Slope length (m) 0.265a 0.238a

Slope gradient (%) 0.254a 0.274a

Absolute value of deflection angle (degree) 0.128 0.125
Horizontal curve radius (m) 0.049 0.073

Mountainous hilly region Absolute value of deflection angle (degree) 0.393a 0.219a

Slope length (m) 0.178a 0.259a

Horizontal curve radius (m) 0.150a 0.151
Vertical curve radius (m) 0.143 0.194a

Slope gradient (%) 0.135 0.177
athe selected top three important variables by CART and RF, and AADT is the default important variables in
each data set.
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mountainous hilly region due to the complex and numerous horizontal
curves in these areas. Besides, with the number of tangents and large-radius
curves increasing in plain region, the vertical radius and slope lengths
became crucial for crashes. Therefore, the comparison of model predictive
performance need to be conducted to identify which variable selection
method is better.

4.2. Comparison between prediction results of basic models

Based on the results of variable selection, four machine learning models
were built: (1) CARTþBPNN model, (2) RFþBPNN model, (3)
CARTþ SVM model, and (4) RFþ SVM model. The data set used in this
study was randomly separated into two subsets, one is for training (60%,
70%, and 80% of samples), the other one is for testing (40%, 30%, and 20%
of samples). Then, three traditional models were also built: (1) NB model,
(2) IHSDM-China model, and (3) IHSDM-US model. Next, the seven base
models of ensemble learning framework were compared with each other
(the MOEs of all machine learning CPMs took the average value of training
sizes of 60%, 70%, and 80%), as shown in Figure 2.
With regard to the two folds (MAD and MSPE criteria) of seven base

model comparisons, four machine learning models have lower fitting and
predictive errors for the training and testing data sets than the three trad-
itional models. This demonstrates that machine learning algorithms for
crash prediction may give a better approximation performance than NB
models and IHSDM models, and SVM and BPNN models have good cap-
acity for modeling nonlinear relationships between crash number and road
geometric alignments (Zeng et al., 2016c).
Moreover, among three traditional CPMs, the NB model and IHSDM-

China model outperforms than the IHSDM-US model. The reasonable
explanation for this is that the SPFs should be developed for Chinese free-
ways and a calibration procedure should be conducted to adjust SPFs to
reflect location conditions (AASHTO, 2010). SVM models are better per-
formed than BPNN models in four machine learning models, indicating
that the SVM models are particularly useful when the sample size is below
2,000 observations (Li et al., 2008). It is also noticeable that CART can be
used as variable selecting procedure in developing crash prediction models
(Yu and Abdel-Aty, 2013; Abdel-Aty and Haleem, 2011). After conducting
sensitivity tests of RFþ SVM, RFþBPNN, RF is not suggested for use in
selecting important variables before building CPM-GA due to the instability
of models, though RF were used as important variable selection in other
studies (Abdel-Aty& Haleem, 2011; Haleem & Gan, 2013).
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4.3. Sensitivity analysis comparison of base models

To minimize the black-box problem of machine learning methods, the
method proposed by Fish and Blodgett (2003) was adopted to analyze the
sensitivity of machine learning models. Typical road segments which meet
the basic conditions of IHSDM-China (for more details, please refer to
Hou, 2014) were selected for sensitivity analysis (four road segments for
each terrain conditions). After sensitivity analysis for seven basic CPMs
were conducted, only IHSDM-China and CARTþ SVM were chosen due
to other models’ instability. And the sensitivity results of CART/RFþ SVM
and IHSDM-China (in mountainous region) are shown in Figure 3.
According to the results in Figure 3, the SVM crash prediction models

are quite unstable when compared with IHSDM-China model in the sensi-
tivity test, which are different from previous studies of SVM (Yu and
Abdel-Aty, 2013; Li et al., 2008). This phenomenon indicates that when
SVM models were applied in CPM-GA based on Chinese freeway crash
data, the SVM models’ results are tend to fluctuate within a certain range
according to the varying predictor variables. This instability is contradictory

Figure 2. Comparisons of fitting and prediction performance between traditional Crash
Prediction Model using Geometric Alignments and Traffic Data (CPM-GAs) and machine learning
CPM-GAs.
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to the general relationships between the crash rate and road geometric
alignments and traffic volume observed in previous studies (Miaou, 1994;
Bauer and Harwood, 2014; Hou, 2014). The reason for SVM model gener-
ating this result maybe attributed that crash data have the stochastic feature
in themselves and lack input data that are similar with the road segments
of sensitivity test. However, when sensitivity analysis was conducted in
IHSDM-China model, it shows regular and common relationships between
crash rate and its related factors due to its internal functions forms.
It is also interesting to found that the fluctuate tendency of SVM model

is almost the same for the sensitivity test of absolute value of deflection
angle, slope length, and AADT, indicating that input variables have nearly
the same effect on the output due to the radial basis function (RBF) in the
SVM algorithm.

4.4. Ensemble learning results

As mentioned before, the new ensemble approach combining IHSDM-
China model and CARTþ SVM model was applied and results of the
ensemble learning CPM-GAs are positive in three data sets. The prediction
accuracy and stability (model stability is measured by the variance of

Figure 3. Comparison between Interactive Highway Safety Design Model in China (IHSDM-
China) (blue dashed curve) model and Classification And Regression Tree þ Support Vector
Machine (CARTþSVM) model (red curve) in the sensitivity analysis for different variables in
mountainous region.
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predict results) for basic models were both effectively improved, which is
shown in Table 3.
From the results in Table 3, it is concluded that the proposed ensemble

learning method in this paper can effectively increase prediction accuracy
and stability at the same time. The average predict crash rate of the ensem-
ble learning model is bigger than that of traditional IHSDM-China model
and smaller than that of SVM model. The ensemble learning method can
reduce the prediction error of IHSDM-China model by 10%–16% and
reduce the variance of CARTþ SVM model by 12%-36%. This indicates
that the ensemble learning model outperforms the tradition models and
machine learning algorithms in aspects of model accuracy and stability,
which confirms the major purpose of this study. Therefore, the proposed
new ensemble learning CPM-GA can be a useful tool in road safety evalu-
ation and road management. Given the fact that road geometry design
greatly depends on the different terrains in China and a distinct difference
of average crash rate in three trains (shown in Table 3), building different
CPA-GAs based on three terrains (mountainous region, plain region, and
mountainous hilly region) is recommended for predicting annual crash rate
more accurately. Mountainous region usually has higher crash rate than the
other terrains because of the presence of many long and steep longitudinal
slopes (Meng et al., 2011).

5. Conclusions

Road safety evaluation is believed to have a promising future for improving
the current traffic safety situation in Chinese freeway network. Therefore,
stable and accurate CPMs are needed. CPM-GAs are the most classic mod-
eling way in traffic safety analysis, which can be applied in road safety
evaluation and road management. Given the fact that many previous stud-
ies mainly focused on the traditional statistical models to explore the rela-
tionship of crash rate and road geometric alignments and traffic volume,
only a few studies revisit these relationships from the perspective of

Table 3. The prediction performance and sensitivity of ensemble learning CPM-GA

Category

IHSDM-China CARTþ SVM
Ensemble
learning

REC (%) RVC (%)MAD MSPE MAD MSPE MAD MSPE

Mountainous region 3.22 63.74 2.71 51.73 2.87 55.93 �10.72 –35.47
Plain region 1.00 2.25 0.82 1.60 0.89 1.88 �11.15 –26.67
Mountainous hilly region 1.13 2.87 0.76 1.48 0.95 2.12 �15.91 –12.86

Note. CPM-GA ¼ Crash Prediction Model using Geometric Alignments and Traffic Data; IHSDM ¼ Interactive
Highway Safety Design Model; CART ¼ Classification And Regression Tree; SVM ¼ Support Vector Machine;
MAD ¼ Mean Absolute Deviation; MSPE ¼ Mean Absolute Deviation; REC ¼ Relative Error Change; RVC ¼
Relative Variance Change.

Relative error change of ensemble learning is compared with IHSDM-China model, and relative variance change
is compared with CARTþ SVM model.
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machine learning algorithms and compare traditional CPM-GAs (NB and
IHSDM) with machine learning CPM-GAs (BPNN and SVM) at the
same time.
To fill this gap and inspired by the basic idea of EL, the ensemble learn-

ing framework and a new ensemble rule for connecting traditional CPM-
GAs and machine learning CPM-GAs was proposed. The major objective
of this study was to form an ensemble learning CPM with high stability
and prediction accuracy. To accomplish this objective, the data for a total
number of 3970 crashes occurred in three freeways in China were collected
at first, and the input data were divided into three categories (mountainous
region, plain region, and mountainous hilly region) to build CPM-GA,
respectively. Next, the prediction accuracy and sensitivity of seven base
CPMs (three traditional models and four machine learning models) were
compared with each other at the same time. Finally, the best traditional
model (IHSDM-China model) and the best machine learning method
(CARTþ SVM model) were combined to form the final ensemble learning
model, and the results show that:

� Whether CART or RF were employed as the procedure of critical varia-
bles selection, the fitting and prediction performance of SVMs and
BPNNs was almost the same. However, CART is more recommended to
be used before applying SVM models of CPM-GAs, because RFþ SVM
produced some negative values in the sensitivity tests in this study.

� Among seven base CPMs, machine learning models (SVM and BPNN)
outperformed traditional models (NB and IHSDM) significantly in
aspects of fitting and prediction accuracy than. However, machine
learning CPMs suffered instability shortcomings in the sensitivity test;
traditional methods had lower prediction accuracy than machine learn-
ing algorithms but have the advantages of model stability and transfer-
ability in different data sets.

� In comparison of three traditional CPM-GAs, NB model and IHSDM-
China model has the highest prediction accuracy; CARTþ SVM has the
highest prediction accuracy in contrast with other three machine learn-
ing models (CARTþBPNN, RFþBPNN, RFþ SVM). In sensitivity test
of IHSDM-China and CARTþ SVM, the mean predicted value of crash
rate in CARTþ SVM is relatively higher than that in IHSDM-China,
and the results of CARTþ SVM showed the big variance and irregular
characteristic with to the changing of predictor variables in some case.

� The new proposed ensemble learning CPM-GA was proved to be an
effective way of reducing the variance of SVM models and passing the
sensitivity test in this study. This ensemble method can improve the
prediction accuracy of traditional IHSDM models as well. These results
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may enlighten more innovation methodologies for building hybrid
CPMs in the future.

Facing the challenges coming from artificial intelligence in traditional
traffic safety analysis, the most important question is, with two major types
of CPMs (traditional CPMs and machine learning CPMs) at present, which
one is the best? Or could there be any connection between these two types
CPMs? The answer given by this study is that, the two types CPMs are
complementary with each other, and it’s difficult to declare which type is
better without considering its interest and data. There probably be a con-
nection between them with the basic idea of ensemble learning. As men-
tioned before, traditional CPMs and machine learning CPMs have their
own irreplaceable advantages, and ensemble of these two types CPMs may
form a better comprehensive model with better predictive accuracy and
transferability. The new ensemble learning CPM in this paper was exam-
ined to be useful to improve the accuracy and stability (avoiding the over-
fitting problems of SVM models) of basic CPM-GAs, which realized the
final purpose of this study.
However, the ensemble learning CPM still has the issue of black-box,

and future investigation can focus on verifying this new ensemble approach
in different datasets. The authors hope that the idea presented in this paper
may shed light on more researches for hybrid CPMs which connect trad-
itional and machine learning algorithms in traffic safety field in the future.
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