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Introduction: With the increasing trend of pedestrian deaths among all traffic fatalities in the past decade,
there is an urgent need for identifying and investigating hotspots of pedestrian-vehicle crashes with an
upward trend.Method: To identify pedestrian-vehicle crash locations with aggregated spatial pattern and
upward temporal pattern (i.e., hotspots with an upward trend), this paper first uses the average nearest
neighbor and the spatial autocorrelation tests to determine the grid distance and the neighborhood dis-
tance for hotspots, respectively. Then, the spatiotemporal analyses with the Getis-Ord Gi* index and the
Mann-Kendall trend test are utilized to identify the pedestrian-vehicle crash hotspots with an annual
upward trend in North Carolina from 2007 to 2018. Considering the unobserved heterogeneity of the
crash data, a latent class model with random parameters within class is proposed to identify specific con-
tributing factors for each class and explore the heterogeneity within classes. Significant factors of the
pedestrian, vehicle, crash type, locality, roadway, environment, time, and traffic control characteristics
are detected and analyzed based on the marginal effects. Results: The heterogeneous results between
classes and the random parameter variables detected within classes further indicate the superiority of
latent class random parameter model. Practical Applications: This paper provides a framework for
researchers and engineers to identify crash hotspots considering spatiotemporal patterns and contribu-
tion factors to crashes considering unobserved heterogeneity. Also, the result provides specific guidance
to developing countermeasures for mitigating pedestrian-injury at pedestrian-vehicle crash hotspots
with an upward trend.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.
1. Introduction

Compared to other entities in traffic crashes, pedestrians are
more vulnerable to suffer severe injuries. According to one report
from the National Highway Safety Administration (NHTSA, 2019),
in the United States there were 5,977 pedestrian fatalities in traffic
crashes in 2017. From 2008 to 2017, the percentage of pedestrian
deaths in total traffic fatalities has constantly increased from 12%
to 16%. In recent years, more and more efforts have been put into
investigating contributing factors of the pedestrian injury severity
at specific hazardous locations (Anderson, 2009; Dai, 2012). Mean-
while, existence of the temporal variation and tendency of the
pedestrian crash data might affect the model result in different
ways (Behnood & Mannering, 2016), and neglecting the fundamen-
tal temporal features could result in erroneous conclusions
(Mannering, 2018). One previous research study has identified
the instability of different time scales among the pedestrian
crashes, and the annual variation mainly shows an increasing/de-
creasing trend (Dai, 2012). Hence, there is an urgent need to
develop a proper approach to identifying the contributing factors
at crash hotspots with annual uptrends.

Previous studies have applied several methods to explore the
factors to crash severity. A detailed review was summarized in
(Mannering & Bhat, 2014), and this review also pointed out that
the heterogeneity inherent in the crash observations could result
in biased parameter estimations and incorrect inferences. To
obtain more accurate and specific model results, it is important
to investigate the pedestrian injury severity by considering the
heterogeneity both within and between the pedestrian crash
observations.
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To identify specific contributing factors and provide guidance
for improving the deteriorative tendency of pedestrian-vehicle
crashes at hotspots, this paper uses the spatiotemporal trend anal-
ysis with the Getis-Ord Gi* index and the Mann-Kendall trend test
to explore the annual spatial clustering and the temporal tendency
of pedestrian-vehicle crashes in North Carolina from 2007 to 2018.
Meanwhile, the grid distance interval and the neighborhood dis-
tance are determined by the average nearest neighbor and the spa-
tial autocorrelation test, respectively. Then, a sequential process by
combining latent class clustering with random parameter logit
approaches are used to identify contributing factors considering
the heterogeneity within and between the classes.
2. Literature review

2.1. Crash locations considering spatiotemporal patterns

To identify aggregated/high-frequency traffic crash locations,
point pattern analyses, such as the kernel density estimation
(KDE) (Ouni & Belloumi, 2018) and Getis-Ord Gi* index
(Songchitruksa & Zeng, 2010), were commonly used in previous
studies. However, KDE is not feasible for the statistical significance
test and the density pattern will certainly be influenced by the
choice of bandwidth (Plug, Xia, & Caulfield, 2011). Hence, the
Getis-Ord Gi* index, which is a statistical-based test for high/low
value clusters, was then deployed to identify the spatial patterns
in several studies. Ulak, Kocatepe, Ozguven, Horner, and
Spainhour (2017) employed the Getis-Ord Gi* index to identify
hotspots with the optimized neighborhood distance that was
determined by the Global Moran’s I test. Results showed that the
accessibility to hospitals of hotspots is one of the major reasons
for severe injuries. Considering that the Getis-Ord Gi* and the glo-
bal Moran’s I could identify spatial patterns from local and global
perspectives, respectively (Blazquez, Picarte, Calderón, & Losada,
2018), this paper employs the Getis-Ord Gi* for hotspots identifica-
tion and utilizes the global Moran’s I to provide a reference for the
neighborhood distance. Meanwhile, the average nearest neighbor
(ANN) was employed to calculate the distance interval between
traffic crashes (Yalcin & Sebnem Duzgun, 2015).

For the temporal trend analysis, the Mann-Kendall trend test,
which is a statistical-based non-parametric rank correlation analy-
sis method, has been widely used in previous studies (Gudes,
Varhol, Sun, & Meuleners, 2017; Wang & Chan, 2016). Gudes
et al. (2017) evaluated temporal patterns of the hot/cold spot
regions of the heavy-vehicle crashes by the Mann-Kendall trend
test. Results showed inconsistency of temporal patterns in hot-
spots over time. With such analyses, the temporal tendency of hot-
spots could be further investigated.

2.2. Identification of injury-severity factors considering unobserved
heterogeneity

As summarized in Table 1, statistics-based methods, such as an
ordered/unordered response model with a logit/probit link func-
tion, have been widely used because of their good performance
in parameter calibration and outcome interpretation (Mannering
& Bhat, 2014). Moreover, to avoid biased parameters estimation
and incorrect inferences caused by the unobserved heterogeneity,
random parameter models, which can potentially capture unob-
served heterogeneity by allowing parameters to vary across obser-
vations, were proposed (Mannering & Bhat, 2014). Abay (2013)
compared the pedestrian severity outcomes with ordered logit,
mixed ordered logit, multinomial logit, and mixed logit. The result
revealed that mixed models can accommodate flexible variable
185
effects to some extent while fixed-parameters injury severity mod-
els underestimated the effect of some important behavioral attri-
butes of the crashes.

For a heterogeneity-based data segmentation approach
employed in pedestrian injury severities, Table 1 also shows many
sequential processes of combining the Latent Class Clustering (LCC)
with other models, such as the Multinomial Logit model (MNL)
(Sun, Sun, & Shan, 2019), Partial Proportional Odds model (PPO)
(Li & Fan, 2019a), and Mixed Logit Model (Behnood & Mannering,
2016). Iranitalab and Khattak (2017) compared the crash severity
prediction performance of the LCC and k-means clustering with
the MNL and three machine learning methods. Results indicated
that LCC could well improve the performance of the multinomial
logit model. Behnood and Mannering (2016) analyzed differing
injury-severity levels sustained by pedestrians in Chicago using
both latent class and mixed logit models, which better accounts
for unobserved heterogeneity compared to conventional models.
Hence, a random parameter model (mixed logit model), which
accounts for the heterogeneity across the observations, is consid-
ered after the implementation of LCC.

3. Methodology

3.1. Spatiotemporal analysis

3.1.1. Spatiotemporal trend analysis
The basic idea of conducting the spatiotemporal trend analysis

is to first divide the map into square bins with a specific distance
interval and time interval. The Getis-Ord Gi* index (Getis & Ord,
2010) and the Mann-Kendall test (Kendall & Gibbons, 1990;
Mann, 1945) are used to investigate spatial hot/cold (i.e., aggregat-
ing of high/low values) pattern and the temporal tendency of these
patterns, respectively. The formula of Getis-Ord Gi* index is:

G�
i ¼

Pn
j¼1xi;jxj � X

Pn
j¼1xi;j

SDðxjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

n�1

Pn
j¼1

x2
i;j � 1

n�1 ð
Pn
j¼1

xi;jÞ
2

s ð1Þ

where xj represents the attribute value of the jth bin. xi;j ¼ 1 if the
jth bin is within the spatiotemporal neighborhood distance of the
ith bin and 0 otherwise. n denotes the total number of bins within
the spatiotemporal neighborhood distance. X is the mean value for
xj. SDðxjÞ means the standard deviation for xj. G

�
i is also a Z-score.

When the p-value is statistical significance, G�
i > 0 represents a

clustering pattern of the high values (hotspot), G�
i ¼ 0 denotes a

random pattern of the values, and G�
i < 0 means a clustering pattern

of the lower values (cold spot).
Then the Mann-Kendall trend test is performed on every loca-

tion/grid with data within a specified time interval. For the Gi*
value within each time interval fNt : t ¼ 1;2; � � � ; Tg, the trend test
statistic S is:

S ¼
XT�1

i¼1

XT
j¼iþ1

aij ð2Þ

aij ¼ sign Nj � Ni
� � ¼

1Ni < Nj

0Ni ¼ Nj

�1Ni > Nj

8><
>: ð3Þ

where aij is a symbolic variable which counts the rank/trend of the
Getis-Ord Gi* index.

The null hypothesis for S is zero, which means no trend in the
values over time. Based on the variance of the values in the bin
time series, Z statistic is used for the statistical significance test.



Table 1
Summary of methodological approaches in pedestrian injury severity studies.

Model Specific scenario Year Location Data Literature

Multinomial logit model (MNL) – 2005–2012 North
Carolina

3,553 (Chen & Fan, 2019)

Partial proportional odds model (PPO) pedestrian 2007–2014 North
Carolina

10,875 (Li & Fan, 2019b)

Support vector machine and MNL time of day 2010–2014 California 8,573 (Mokhtarimousavi, 2019)
Binary logistic regression and tree-based models – 2014–2016 Changsha,

China
791 (Hu, Wu, Huang, Peng, & Liu,

2020)
Classification and regression tree with random

forest approach.
weather 2013 Britain 14,174 (Li, Ranjitkar, Zhao, Yi, &

Rashidi, 2017)
Extracted rules from Bayesian networks urban and suburban 2009–2011 Jordan 21,852 (Mujalli, Garach, López, & Al-

Rousan, 2019)

Considering unobserved heterogeneity
Mixed logit model signalized and non-signalized

locations
2008–2010 Florida 7,630 (Haleem et al., 2015)

Mixed logit model � 1997–2000 North
Carolina

5,808 (Kim et al., 2010)

Random-parameter (mixed) logit – 2002–2006 New York
City

4,666 (Aziz et al., 2013)

Artificial neural network and random parameter
ordered response models

day of week 2010–2014 California 10,146 (Mokhtarimousavi, Anderson,
Azizinamini, & Hadi, 2020)

Ordered logit, mixed ordered logit, multinomial
logit, mixed logit

– 1998–2009 Denmark 4,952 (Abay, 2013)

Ordered logit model, generalized ordered logit
model, and latent class ordered logit model

– 2002–2006 New York
City

4,701 (Yasmin et al., 2014)

Latent class clustering and MNL whole and each cluster 2006–2015 Louisiana 14,236 (Sun et al., 2019)
Latent class clustering and binary logit whole and each cluster 2009–2012 Switzerland 9,659 (Sasidharan et al., 2015)
Latent class with ordered probit method, k-means

with MNL
whole and each cluster 2002–2006 (NYC),

2003–2006 (M)
New York
City,
Montreal

5,820 (Mohamed et al., 2013)

Latent class clustering and PPO each cluster 2007–2014 North
Carolina

10,875 (Li & Fan, 2019a)

Latent-class logit and mixed logit models. period (pre-recession,
recession, and post-
recession)

2005–2012 Chicago 19,895 (Behnood & Mannering, 2016)

Considering spatial and temporal patterns
Bernoulli model and logistic regression spatial clusters 2000–2007 Georgia 7,763 (Dai, 2012)
Kernel density estimation analysis and MNL Spatiotemporal patterns 2001–2013 Tunisia 1,922 (Ouni & Belloumi, 2018)
Geographically and temporally weighted ordinal

logistic regression
– 2007–2014 North

Carolina
13,854 (Liu, Hainen, Li, Nie, &

Nambisan, 2019)
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ZS ¼
S�1
SDðSÞ ; S > 0

0; S ¼ 0
Sþ1
SDðSÞ ; S < 0

8><
>: ð4Þ

When T � 10, statistic S follows the normal distribution approxi-
mately. SDðSÞ denotes the stand error of the S. For a given confi-
dence level a, if ZSj j � ZS;1�a=2

�� ��, then the null hypothesis is
rejected. Also, ZS > 0 and ZS < 0 indicate the uptrend and down-
trend in bin values.

3.1.2. Average nearest neighbor
The average nearest neighbor analysis is used to provide a rea-

sonable reference for the distance interval of the grid. If the aver-
age distance of the data is less than the average distance for a
hypothetical random distribution, the distribution of the data
being analyzed is considered clustered (Ebdon, 1985). The average
nearest neighbor ratio (ANN) can be expressed as:

ANN ¼ DO

DE
¼

Pn
i¼1di=n

0:5=
ffiffiffiffiffiffiffiffiffi
n=A

p ¼ 2
Pn

i¼1diffiffiffiffiffiffi
nA

p ð5Þ

ZANN ¼ DO � DE

SD
ð6Þ

where DO represents the observed average distance between each
data point and its nearest neighbor. DE means the expected average
distance for the randomly distributed data points. di denotes the
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distance between data i and its nearest neighboring data. n corre-
sponds to the total number of data, and A is the area of a minimum
enclosing rectangle around all data points. If ANN is less than 1, the
point pattern exhibits clustering. If ANN equals 1, there has no
trend. If ANN is greater than 1, the trend is dispersion.

3.1.3. Spatial autocorrelation test
The Global Moran’s I is a spatial autocorrelation test and can be

used to evaluate the clustered, dispersed, or random spatial pattern
in observations (Moran, 1948). This paper utilizes the I index to
provide a reasonable reference for the neighborhood distance of
bins used in the spatial–temporal analysis.

I ¼
Pn

i¼1

Pn
j¼1wij � CijPn

i¼1

Pn
j¼1wij � DðxiÞ

¼
Pn

i¼1

Pn
j¼1wij � ðxi � xÞðx� xÞPn

i¼1

Pn
j¼1wij � 1

n

Pn
1ðxi � xÞ2

ð7Þ

ZI ¼ I � EðIÞffiffiffiffiffiffiffiffiffi
DðIÞp ð8Þ

where xi is the attribute value of j spatial location/grid. wij ¼ 1 if the
jth grid is within the spatial neighborhood distance of the ith grid
and 0 otherwise. Cij denotes the attribute similarity matrix.

E Ið Þ ¼ �1=ðn� 1Þ: D Ið Þ ¼ E I2
� �

� E Ið Þ2: If I is positive and close to

1, it denotes the incremental spatial autocorrelation (clustered pat-
tern) between neighborhoods; if I is equal to 0, it means a random
pattern of features; and if I is less than 0, it represents a dispersed
pattern of features.
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3.2. Latent class random parameters model

3.2.1. Latent class clustering
The latent class clustering (LCC) is a statistical model-based

approach that can classify the dataset into homogenous subsets
by maximizing the heterogeneity between classes (Lanza, Collins,
Lemmon, & Schafer, 2007). It is assumed that the LCC segments
the whole dataset with J discrete category variables into M classes.
The probability of response Y can be calculated as:

P Yi ¼ jð Þ ¼
XM
m¼1

cm
YJ
j¼1

YRj
rj¼1

qIðyj¼rjÞ
k;rj jm ð9Þ

where each observation i contains J categorical variables, Yi denotes
the response of the observation i for J category, and Yi = 1, 2, . . .rj. cm
is the membership probability for latent class cluster m (m = 1, 2,

. . ., M). qIðyj¼rjÞ
k;rj jm represents the item-response probability that obser-

vation i has response rj being conditioned on latent class member-
ship m. q means the correspondence between observed and
unobserved classes. Iðyj ¼ rjÞ denotes the indicator function that
equals to 1 when yj ¼ rj, and 0 otherwise.

To determine an appropriate number of classes, four commonly
used criteria including Akaike Information Criterion (AIC), Consis-
tent Akaike Information Criterion (CAIC), Bayesian Information Cri-
teria (BIC) and Entropy-based Measures (EM) are utilized (Song &
Fan, 2020). Smaller values of the AIC, BIC, and CAIC indicate a bet-
ter clustering result. Meanwhile, the EM indicates the information
quality of the cluster and closing to 1 means a better clustering
result (McLachlan & Peel, 2004).

3.2.2. Random parameter logit model
Following the LCC, random parameter logit model (or mixed

logit model) is developed to further explore the unobserved
heterogeneity for each segmented crash data. The utility function
is defined as a linear function for individual i with severity level j:

Uij ¼ biXij þ nij þ eij ð10Þ

where Xij is a vector of independent variables, bi denotes the corre-
sponding parameter. nij represents the error component that has a
general distribution correlated among severity levels and
heteroscedastic for individuals, and eij is the random term with
independently and identically distributed Gumbel distribution over
severity levels and individuals (McFadden & Train, 2000).

The probability of individual i for injury severity j is the integral
of the condition choice probability PiðjjnijÞ over the distribution of
nij.

PiðjjnijÞ ¼
exp biXij þ nij

� �
PJ

j¼1exp biXij þ nij
� � ð11Þ

Since the PiðjÞ does not always have a closed-form solution, 200
Halton draws are used in the simulation-based maximum likeli-
hood method for parameter estimation. All the random parameters
are assumed to be normally distributed since the parameters could
be positive and negative. Marginal effects are used to illustrate the
impact of the explanatory variable in the changing values of sever-
ity probability outcomes (Derr, 2013).

4. Data description

The data used in this paper are obtained from the North Caro-
lina Department of Transportation (NCDOT), which include
33,707 pedestrian-vehicle crash observations in North Carolina
from 2007 to 2018. The whole spatiotemporal analysis process
uses a 5% significant level. The distance interval for the temporal
187
trend analysis is set as 382 m, which is obtained by the average
nearest neighbor test (ANN ratio: 0.286; Z-score: �250.845; P-
value <0.0001). The inverse neighborhood distance is set as
8,000 m, which is determined by the empirical results of the spatial
autocorrelation test and the total number of hotspots detected. As
shown in Fig. 1, the Moran’s Index at 8,000 m is 0.36, which
denotes a clustering pattern within the neighborhood distance,
and the z-score reaches 322. Meanwhile, the total number of hot-
spots reaches 5,810 with a change rate less than 5% after 8,000 m.
A total number of 17,013 pedestrian-vehicle crashes at hotspots
with upward annual trend are detected and is shown in Fig. 2.

To further model the contributing factors to pedestrian injury
severity at hotspots with an upward trend, 13,303 pedestrian
injury observations are filtered after selecting the pedestrian with
the highest injury severity in single vehicle involved crashes and
deleting observations with missing variables. The pedestrian sever-
ity is classified into three levels (i.e., fatal/incapacitating injury (F/
I), non-incapacitating injury (NI), and no/possible injury (N/P)) by
considering both the severity features and crash frequency. As
shown in Appendix Table A1, explanatory variables are classified
into the human, vehicle, crash, locality and roadway, environment
and time, and traffic control categories.
5. Results and discussions

5.1. Latent class clustering results

The LCC is implemented to maximize the heterogeneity
between the datasets. As shown in Fig. 3. The values of AIC, CAIC,
and BIC all decrease with the increase of the class numbers, and
the rate of change is less than 3% after four classes. Meanwhile,
the entropy value for the 4-class model reaches a local maximum
of 0.91, which is close to 1 and denotes a good segmentation of
the data. Hence, this paper uses the LCC to segment the crash data
into four latent classes.

All explanatory variables in Appendix Table A1 are utilized in
the LCC analysis. Table 2 only shows the featured variables having
a proportion that is significantly different from other latent classes,
while other variables are not shown in Table 3 since the propor-
tions of them are comparatively small and less descriptive. The
combination of these featured variables is utilized as a latent vari-
able/label to describe each class. For example, according to the fea-
ture variables in class 1, about 87.78% of the crashes happened in
rural areas, 49.53% occurred in state secondary routes, 56.59% hap-
pened in dark without roadway lights, and 44.79% are set with
double yellow lines, no passing zone sign. Hence, class 1 could be
labeled as a condition of rural, state secondary route, dark without
roadway lights, and double yellow line, no passing zone sign con-
trol. Similarly, class 2 can be specified as a circumstance of urban,
public vehicular area, daylight, and without traffic control. Class 3
can be described as a scenario of urban, local street and driveway,
daylight, and no traffic control. Class 4 can be defined as a situation
of urban, dark with lighted roadway, and no traffic control.
5.2. Random parameter logit model results

After obtaining the LCC results, the heterogeneity within the
crash is further investigated with four random parameter logit
models. To obtain significant variables in each latent class, all
explanatory variables are first utilized as the inputs in the random
parameter logit model. The Chi-square test is applied as the selec-
tion criterion for both significant fixed variables and random
parameter variables at a 5% significance level. Final variable coeffi-
cient estimation results are shown in Appendix Tables A2–A5.



Fig. 1. Number of hotspots and the Moran’s Index for different neighborhood distance.

Fig. 2. Spatiotemporal trend analysis result for hotspots with upward trend in North Carolina.

Fig. 3. Latent class results of AIC, BIC CAIC, and Entropy value for different class numbers.
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Table 2
Distributions of featured variables (bold) and statistics for each latent class.

Variable No. Description Class 1 Class 2 Class 3 Class 4

Locality 2 Urban 12.22% 91.92% 97.64% 97.98%

RdClass 4 State Secondary Route 49.53% 0% 0.05% 0.31%
5 Local Street, Driveway 6.55% 9.97% 93.95% 87.09%
6 Public Vehicular Area 1.16% 89.89% 1.14% 3.33%

LightCond 1 Daylight 37.05% 77.62% 91.87% 2.59%
3 Dark – Lighted Roadway 3.06% 17.42% 2.28% 70.86%
4 Dark – Roadway Not Lighted 56.59% 1.21% 0.22% 22.49%

Control 1 No Control Present 48.25% 95.26% 50.62% 66.68%
4 Double Yellow Line, No Passing Zone 44.79% 0.15% 1.4% 1.7%

Table 3
Marginal effects of explanatory variables in class 1 and class 2.

Variable Description Class 1 Class 2

Severity level F/Ia NIb N/Pc F/Ia NIb N/Pc

PedAge2 24 < PedAge � 54 (base: <24) �0.019 �0.048 0.067
PedAge4 PedAge � 65 0.231 �0.136 �0.095 �0.007 0.096 �0.090
DrvrVehTyp2 Middle (base: small) 0.022 0.029 �0.051
DrvrVehTyp3 Heavy 0.235 �0.139 �0.096 0.111 0.070 �0.181
AmbulanceR2 No ambulance rescue (base: yes) �0.197 �0.185 0.382 �0.043 �0.143 0.186
CrashGrp2 Crossing roadway with vehicle not turning (base: walking along roadway) 0.160 �0.096 �0.064
CrashGrp4 Off roadway �0.010 0.142 �0.132
CrashGrp6 Dash/dart-out 0.221 �0.130 �0.090
CrashGrp7 Backing vehicle 0.137 �0.325 0.188 �0.011 0.152 �0.142
CrashGrp10 Other/unusual circumstances 0.014 0.259 �0.272
Locality2 Urban (base: rural) �0.025 0.009 0.016
Development2 Commercial (base: residential) �0.015 �0.069 0.084
RdGrad2 Grade (base: level) �0.040 0.091 �0.052
RdClass2 Interstate (base: US route) 0.158 �0.094 �0.064
RdClass5 Local street, driveway 0.038 0.054 �0.092
RdConfig3 Two-way, divided (base: one-way, not divided) 0.143 �0.004 �0.139
LightCond4 Dark – roadway not lighted (base: daylight) 0.111 �0.067 �0.044
Hour6 0:00–5:59 (base 6:00–9:59) 0.032 0.124 �0.156

Note:
a F/I – Fatal/ Incapacitating injury.
b NI – Non-incapacitating injury.
c N/P – No/Possible injury.
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5.3. Marginal effects

The marginal effect results of the explanatory variables at a 5%
significance level are shown in Tables 3 and 4. Variations of such
impacts at the different severity levels and different latent classes
are also detected. It is also noted that even though some variables
have comparatively small proportions in the latent class subsets,
they are still found to be a significant factor in the final results.
The following subsections provide specific analyses and compar-
ison for the impacts of factors on F/I and NI severity across differ-
ent latent classes.
5.3.1. Pedestrian characteristics
Age and alcohol involvement are identified as significant vari-

ables. Compared to the young pedestrians (age <24), the results
in classes1, 3, and 4 indicate an increasing tendency in which the
probability of pedestrian suffering F/I and NI injury would both
increase with the increase of the age stage. For example, the prob-
ability of pedestrians being F/I in class 4 increases from 0.035 to
0.086 and 0.175 with the increase of age stage. A similar result
could be found in (Yasmin, Eluru, & Ukkusuri, 2014). However,
class 2 shows heterogeneity results as the middle-age pedestrians
(age within 24 to 54) and the elder pedestrians (age >65) could
decrease the F/I injury by �0.019 to �0.007, respectively. Such
189
heterogeneity within the demographical variables (age or gender)
among different latent classes can also be supported by some pre-
vious studies (Abay, 2013; Aziz, Ukkusuri, & Hasan, 2013). Besides,
for pedestrians under the influence of the alcohol, the possibility of
pedestrians being F/I injured increases by 0.079 and 0.071 in
classes 3 and 4, respectively. This result is in line with (Abay,
2013; Sasidharan, Wu, & Menendez, 2015), and more specific
enforcements to limit/protect intoxicated pedestrians are needed.
5.3.2. Vehicle characteristics
This study shows that pedestrians are more vulnerable with the

increase of the vehicle weight during pedestrian-vehicle crashes.
For example, compared to small vehicles, the probability of pedes-
trians suffering F/I injury involving the middle and heavy vehicles
in class 2 increases from 0.022 to 0.111, respectively.
5.3.3. Crash characteristics
Compared to ambulance rescue situations, situations without

an ambulance rescue are found to have less F/I and NI injuries in
all classes. This could be possibly explained by the situation under
which people might not call the ambulance when the pedestrian
has no/possible injury. For the hit and run situation, heterogeneous
results show that there are a �0.024 probability decrease and a
0.033 probability increase for the F/I injury in classes 3 and 4,



Table 4
Marginal effects of the explanatory variables in class 3 and class 4.

Variable Description Class 3 Class 4

Severity level F/Ia NIb N/Pc F/Ia NIb N/Pc

PedAge2 24 < Pedage � 54 (base: <24) 0.035 �0.021 �0.014
PedAge3 55 < Pedage � 64 0.033 �0.015 �0.017 0.086 �0.050 �0.035
PedAge4 Pedage � 65 0.082 �0.038 �0.044 0.175 �0.102 �0.073
PedAlcFlag2 PedAlcFlag = ‘yes’ (base: no) 0.079 0.083 �0.161 0.071 0.024 �0.095
DrvrVehTyp2 Middle (base: small) 0.034 �0.016 �0.018
DrvrVehTyp3 Heavy 0.160 �0.093 �0.067
HitRun2 Hit and run (base: no) �0.024 �0.072 0.096 0.033 �0.102 0.069
AmbulanceR2 No ambulance rescue (base: yes) �0.066 �0.248 0.315 �0.081 �0.177 0.258
CrashGrp2 Crossing roadway with vehicle not turning (base: walking along roadway) 0.089 �0.011 �0.078
CrashGrp3 Crossing roadway with vehicle turning �0.078 �0.063 0.142 �0.105 �0.067 0.172
CrashGrp5 Pedestrian in roadway 0.109 �0.064 �0.045
CrashGrp6 Dash/dart-out �0.030 0.204 �0.174 0.092 0.016 �0.108
CrashGrp7 Backing vehicle 0.057 �0.177 0.119
CrashGrp8 Multiple threat/trapped �0.022 0.150 �0.128
CrashGrp9 Bus related vehicle �0.030 0.206 �0.176 0.212 �0.123 �0.089
Locality2 Urban (base: rural) 0.023 �0.153 0.131
Development2 Commercial (base: residential) 0.043 �0.026 �0.018
Development4 Institutional 0.046 �0.141 0.095
RdCurve2 Curve (base: straight) 0.046 �0.021 �0.024 0.104 �0.061 �0.043
RdGrad2 Grade (base: level) 0.023 �0.011 �0.012 0.076 �0.045 �0.031
RdClass2 Interstate (base: US route) 0.046 �0.272 0.226
RdClass5 Local street, driveway �0.031 �0.130 0.161 �0.106 0.063 0.044
RdClass6 Public vehicular area �0.068 �0.249 0.317 �0.089 �0.100 0.189
RdConfig2 Two-way, not divided (base: one-way, not divided) 0.024 �0.074 0.050
RdConfig3 Two-way, divided 0.020 �0.010 �0.011 0.098 �0.057 �0.041
LightCond3 Dark – lighted roadway (base: daylight) 0.197 �0.091 �0.106
LightCond4 Dark – roadway not lighted 0.061 �0.036 �0.025
Weather2 Cloudy (base: clear) 0.073 �0.043 �0.030
Hour2 10:00–14:59 (base 6:00–9:59) �0.029 0.014 0.015
Hour3 15:00–17:59 �0.018 0.009 0.010 �0.096 0.058 0.038
Hour5 21:00–23:59 �0.017 0.052 �0.035
Hour6 0:00–5:59 0.053 0.039 �0.092
TraffCntrl2 Signs (base: no control) �0.016 �0.074 0.091 0.028 �0.086 0.059
TraffCntrl4 Double yellow line, no passing zone 0.084 �0.039 �0.045 0.093 �0.055 �0.039

Note:
a F/I – Fatal/ Incapacitating injury.
b NI – Non-incapacitating injury.
c N/P – No/Possible injury.
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respectively. Meanwhile, both two classes show a probability
decrease for NI injury and a probability increase for N/P injury.

For crash type factors, the situation when the pedestrian is
walking along the roadway is set as the base. Pedestrians crossing
the roadway with the vehicle not turning would result in a 0.16
and 0.089 probability increase for the F/I injury in classes 1 and
4, respectively. In comparison, results show a probability decrease
of �0.078 and �0.105 for the F/I injury when crossing a roadway
with the turning vehicle in classes 3 and 4, respectively. One pos-
sible reason for explaining such a difference might be that the
speed of the vehicles is much lower when turning than when vehi-
cles are traveling straight. Also, the situation when vehicles are off
the roadway decreases the probability with �0.01 for F/I injury in
class 2. This result is also in line with Kim, Ulfarsson, Shankar, and
Mannering (2010) as the driver would reduce the speed when driv-
ing off the roadway. For the situation when the pedestrian is in the
roadway, a 0.109 probability increase for the F/I injury is found in
class 4. A similar conclusion was also drawn in (Mohamed, Saunier,
Miranda-Moreno, & Ukkusuri, 2013). In multiple threat/trapped
situation, a �0.022 probability decrease for the F/I injury and a
0.15 probability increase for the NI injury are identified.

Heterogeneities also exist in variables of dash/dash-out, backing
vehicle, and bus-related cases across different latent classes. In the
dash/dart-out case, heterogeneity results are found in the probabil-
ity of F/I injury. While, the probability of N/P injury decreases in all
classes, which indicate that a severe injury outcome would occur
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under the dash/dart-out situation, and the results are in accord
with Sun et al. (2019). Also, for the backing vehicle case, there is
a 0.137 and 0.057 probability increase for the F/I injury in classes
1 and 4, respectively, while case 2 shows a �0.011 probability
decrease for the F/I injury. For the bus-related case, heterogeneity
results are also observed in the F/I injury, while the probability
decrease for the N/P injury indicates an increase in the severe out-
come in bus-related crashes. All these heterogeneities indicate a
need to analyze the influences of these factors under the specific
scenario, which again shows the superiority of using latent class
random parameter models.

5.3.4. Locality and roadway characteristics
Compared to the rural area, crashes that occurred in the urban

area also show heterogeneous results for the F/I injury. Similar
conclusions on such heterogeneity were also made in Li and Fan
(2019a). Debates on whether pedestrian-vehicle crashes happened
in the urban area are safer than those in the rural area could be
found in past studies. Some scholars concluded that rural is more
dangerous because of the higher speed of vehicles and lack of med-
ical resource (Sasidharan et al., 2015; Ulak et al., 2017), while
others argued that urban has more complex traffic conditions with
sufficiently high speed for fatality (Sun et al., 2019). These two
explanations could well illustrate the heterogeneity in severe inju-
ries that occurred in complex urban areas. In regard to land devel-
opment, heterogeneous results could also be found in commercial
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land. Both commercial and institutional land show about a 0.04
probability increase for F/I injury in class 4, and class 4 denotes a
latent class of urban local street without traffic control.

Roadway alignment, class level, and settlement are three major
significant factors within the category of roadway features
detected in this study. Compared to the straight-road, the curve-
road shows a 0.046 and a 0.104 probability increase for the F/I
injury in classes 3 and 4, respectively. Results on the grade-road
show that the probability of pedestrians being F/I injured is
increased by 0.023 and 0.076 compared to the level-road in classes
3 and 4, respectively. These locations are accident-prone areas as
the driver has bad sight condition and the vehicle is difficult to
control. Similar results could be referred to Sasidharan et al.
(2015). Compared to the U.S. route, results on the interstate roads
indicates a 0.158 and 0.046 probability increase for the F/I injury in
classes 1 and 3. Also, the public vehicular area shows a �0.068 and
�0.089 probability decrease for the F/I injury in classes 3 and 4.
The reason for this might be that the public vehicular area (e.g.,
parking lot) has much lower traveling speeds than the U.S. route
(Li & Fan, 2019b). Heterogeneities are also found in local streets
and driveways. Classes 3 and 4 decrease the probability of pedes-
trians being F/I injured by �0.031 and �0.106, respectively, while
class 2 shows a 0.038 increase in the F/I injury.

5.3.5. Environment and time characteristics
Compared to the daylight environment, both with/without

lighting in the dark environment increase the probability of pedes-
trians being F/I injured in classes 1, 2, and 3 by 0.111, 0.197, and
0.061, respectively. The significant possibility decrease of the F/I
injury requires a better lighting facility in these hotspots and this
finding is in accordance with Yasmin et al. (2014). In comparison
with the clear weather, the cloudy weather situation increases
the probability of pedestrians being F/I injured by 0.073. A similar
result could be referred to Aziz et al. (2013), and one possible rea-
son for this is the decrease of sight in cloudy condition.

Though previous research has already pointed out the positive
correlation between the vehicle-vehicle crash injury severity level
with the peak hour (Mohamed et al., 2013), pedestrian-vehicle
crash frequency in this study does not show a significant difference
between the peak and non-peak hours as vehicle-vehicle crash
does. Hence, this paper categorizes the crash time into six different
periods mainly according to different features of the light condi-
tion, the frequency of the total crashes, and frequency of F/I inju-
ries. Compared to the ‘‘morning” period (6:00–9:59), the ‘‘early
morning” (0:00–5:59) shows a 0.053 probability increase for the
F/I injury in class 4. Similar conclusions are showed in Haleem,
Alluri, and Gan (2015). The ‘‘noon” (10:00–14:59), ‘‘afternoon”
(15:00–17:59), and ‘‘early night” (21:00–23:59) in class 3 and class
4 all show a probability decrease of pedestrians being F/I injured.
Furthermore, comparing the periods within class 3, results show
that the afternoon hour has a higher probability of pedestrians
being F/I injured than the noon hour. Result in class 4 indicates that
pedestrian-vehicle crashes during the early night hour have a
higher probability of being F/I injured for pedestrians compared
to the afternoon hour. The increase of the F/I injury in the early
morning might be caused by the combined impacts of dark envi-
ronment, high speed, and fatigue of the driver in the early morning.

5.3.6. Traffic control characteristics
Compared to the situation of no traffic control, heterogeneity is

found under the traffic sign control situation. Results on traffic sign
control indicate a 0.016 probability decrease for the F/I injury in
class 3, and a 0.028 probability increase for the F/I injury in class
4. The downward tendency of the probability of the NI injury in
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classes 3 and 4 is also detected. There are debates on the heteroge-
neous effects of traffic sign control on the safety of pedestrians.
Kim et al. (2010) observed heterogeneity for traffic sign control
in pedestrian fatalities, and the correlation between pedestrian
age and traffic sign was detected. Possible explanations for such
a difference in the effect of this factor could be concluded as fol-
lows: (a) the mitigatory outcome might result from the warning
function of the traffic signs; and (b) the deteriorative result might
be the consequence of the dangerous and complex environment
where the traffic signs were installed.

6. Conclusions

This study explores factors of pedestrian-injury severity in
pedestrian-vehicle crashes at hotspots with an upward trend con-
sidering the heterogeneity within and between the datasets.
Twelve years of the police-reported pedestrian-vehicle crash data
from 2007 to 2018 in North Carolina are used. Spatiotemporal
trend analysis combined with the average nearest neighbor analy-
sis and the spatial autocorrelation test are implemented to test the
spatial clustering pattern and the temporal tendency of the
crashes. The latent class clustering and four random parameter
logit models are implemented to further investigate the hetero-
geneity within each class. Marginal effects are further calculated
for better interpreting the impacts of categorical variables on the
severity levels.

The random parameter variables detected across observations
and the heterogeneous results between the subgroups indicate
the superiority of combining the latent class clustering with ran-
dom parameter logit models. Significant impacts of pedestrian
behaviors, such as dash/dart-out and crossing or staying in the
roadway, also require more attention to improve the transporta-
tion facilities to provide better protection for pedestrians. Mean-
while, there is a need to strengthen law enforcement and
education to prohibit playing in roadways, crossing divided road-
ways without permission, and drunk walking in/across the road-
ways. Also, more appropriate traffic control management, such as
adjusting the signal phase to decrease the behavior of crossing
with the red light, is needed for both drivers and pedestrians.
Besides, the zebra crossing sign could be equipped with flashing
lights to alert the driver when the pedestrian is crossing since early
night hour (0:00–5:59) is found to be the most dangerous period
for pedestrians. Furthermore, a patrol route considering hotspots
with an upward trend could help to reduce the response time to
reach crash locations.

This paper provides a framework for researchers and engineers
to identify crash hotspots considering spatiotemporal patterns and
explore contribution factors to crashes considering unobserved
heterogeneity. However, the temporal fluctuations may still exist
in different time scales and may be caused by different factors such
as the global recession (Behnood & Mannering, 2016). Further
studies are still needed to investigate the heterogeneities within
the time–space scale, spatial and temporal correlations of the fac-
tors, and the temporal fluctuation and instability of the crash data.
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Appendix A

Table A1
Statistics of explanatory variables for pedestrian-vehicle crashes at hotspots with an upward trend.

Variable Description Total F/Ia NIb N/Pc

Number of observations 13303 1415(10.64%) 5046(37.93%) 6842(51.43%)

Pedestrian Characteristics
PedAge PedAge � 24 1 4305 395(9.18%) 1788(41.53%) 2122(49.29%)

24 < PedAge � 54 2 6459 680(10.53%) 2330(36.07%) 3449(53.4%)
55 < PedAge � 64 3 1299 164(12.63%) 449(34.57%) 686(52.81%)
PedAge � 65 4 1240 176(14.19%) 479(38.63%) 585(47.18%)

PedSex Male 1 7593 972(12.8%) 2978(39.22%) 3643(47.98%)
Female 2 5710 443(7.76%) 2068(36.22%) 3199(56.02%)

PedAlcFlag PedAlcFlag = ’No’ 1 11867 1026(8.65%) 4416(37.21%) 6425(54.14%)
PedAlcFlag = ’Yes’ 2 1436 389(27.09%) 630(43.87%) 417(29.04%)

Vehicle Type
DrvrVehTyp Small 1 7998 754(9.43%) 3045(38.07%) 4199(52.5%)

Middle 2 4940 593(12%) 1865(37.75%) 2482(50.24%)
Heavy 3 365 68(18.63%) 136(37.26%) 161(44.11%)

Crash Characteristics
AmbulanceR Ambulance Rescue 1 9880 1287(13.03%) 4225(42.76%) 4368(44.21%)

No Ambulance Rescue 2 3423 128(3.74%) 821(23.98%) 2474(72.28%)

HitRun No Hit and Run 1 11653 1279(10.98%) 4494(38.57%) 5880(50.46%)
Hit and Run 2 1650 136(8.24%) 552(33.45%) 962(58.3%)

CrashGrp Walking Along Roadway 1 845 117(13.85%) 346(40.95%) 382(45.21%)
Crossing Roadway with Vehicle Not Turning 2 2692 502(18.65%) 1079(40.08%) 1111(41.27%)
Crossing Roadway with Vehicle Turning 3 2092 60(2.87%) 718(34.32%) 1314(62.81%)
Off Roadway 4 1632 59(3.62%) 486(29.78%) 1087(66.61%)
Pedestrian in Roadway 5 696 135(19.4%) 256(36.78%) 305(43.82%)
Dash/Dart-Out 6 1182 175(14.81%) 632(53.47%) 375(31.73%)
Backing Vehicle 7 1325 54(4.08%) 342(25.81%) 929(70.11%)
Multiple Threat/Trapped 8 214 15(7.01%) 113(52.8%) 86(40.19%)
Bus related Vehicle 9 134 12(8.96%) 64(47.76%) 58(43.28%)
Other/Unusual Circumstances 10 2491 286(11.48%) 1010(40.55%) 1195(47.97%)

Locality and Roadway Characteristics
Locality Rural 1 1282 276(21.53%) 485(37.83%) 521(40.64%)

Urban 2 12021 1139(9.48%) 4561(37.94%) 6321(52.58%)

Development Residential 1 4584 484(10.56%) 1897(41.38%) 2203(48.06%)
Commercial 2 7705 768(9.97%) 2769(35.94%) 4168(54.09%)
Industrial 3 76 3(3.95%) 37(48.68%) 36(47.37%)
Institutional 4 485 27(5.57%) 172(35.46%) 286(58.97%)
Farms, Woods, Pastures 5 453 133(29.36%) 171(37.75%) 149(32.89%)

RdCurve Straight 1 12770 1306(10.23%) 4846(37.95%) 6618(51.82%)
Curve 2 533 109(20.45%) 200(37.52%) 224(42.03%)

RdGrad Level 1 10996 1055(9.59%) 4116(37.43%) 5825(52.97%)
Grade 2 1718 277(16.12%) 685(39.87%) 756(44%)
Hillcrest 3 502 66(13.15%) 203(40.44%) 233(46.41%)
Bottom 4 87 17(19.54%) 42(48.28%) 28(32.18%)

RdClass US Route 1 415 128(30.84%) 170(40.96%) 117(28.19%)
Interstate 2 241 103(42.74%) 72(29.88%) 66(27.39%)
State Route 3 329 78(23.71%) 138(41.95%) 113(34.35%)
State Secondary Route 4 465 100(21.51%) 196(42.15%) 169(36.34%)
Local Street, Driveway 5 8479 882(10.4%) 3521(41.53%) 4076(48.07%)
Public Vehicular Area 6 3374 124(3.68%) 949(28.13%) 2301(68.2%)

(continued on next page)
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Appendix A (continued)

Variable Description Total F/Ia NIb N/Pc

RdConfig One-Way, Not Divided 1 1275 69(5.41%) 421(33.02%) 785(61.57%)
Two-Way, Not Divided 2 9119 820(8.99%) 3395(37.23%) 4904(53.78%)
Two-Way, Divided 3 2909 526(18.08%) 1230(42.28%) 1153(39.64%)

Environment and Temporal Characteristics
LightCond Daylight 1 7977 519(6.51%) 2923(36.64%) 4535(56.85%)

Dawn/Dusk Light 2 604 62(10.26%) 207(34.27%) 335(55.46%)
Dark – Lighted Roadway 3 3336 456(13.67%) 1390(41.67%) 1490(44.66%)
Dark – Roadway Not Lighted 4 1386 378(27.27%) 526(37.95%) 482(34.78%)

Weather Clear 1 10242 1075(10.5%) 3909(38.17%) 5258(51.34%)
Cloudy 2 1800 204(11.33%) 643(35.72%) 953(52.94%)
Rain 3 1141 125(10.96%) 440(38.56%) 576(50.48%)
Snow, Sleet, Hail, Freezing Rain/Drizzle 4 80 4(5%) 38(47.5%) 38(47.5%)
Fog, Smog, Smoke 5 40 7(17.5%) 16(40%) 17(42.5%)

Hour 6:00–9:59 1 1889 174(9.21%) 709(37.53%) 1006(53.26%)
10:00–14:59 2 3252 199(6.12%) 1107(34.04%) 1946(59.84%)
15:00–17:59 3 2805 200(7.13%) 1064(37.93%) 1541(54.94%)
18:00–20:59 4 2668 330(12.37%) 1036(38.83%) 1302(48.8%)
21:00–23:59 5 1598 269(16.83%) 671(41.99%) 658(41.18%)
0:00–5:59 6 1091 243(22.27%) 459(42.07%) 389(35.66%)

Traffic Control Type
TraffCntrl No Control Present 1 8876 996(11.22%) 3351(37.75%) 4529(51.03%)

Signs 2 1126 73(6.48%) 367(32.59%) 686(60.92%)
Signal 3 2613 220(8.42%) 1056(40.41%) 1337(51.17%)
Double Yellow Line, No Passing Zone 4 548 119(21.72%) 230(41.97%) 199(36.31%)
Human Control 5 140 7(5%) 42(30%) 91(65%)

Note: variables in bold and numbered with 1 are set as the base for the explanatory variables.
a F/I – Fatal/Incapacitating injury. bNI – Non-incapacitating injury. c N/P – No/Possible injury.

Table A2
Random parameter logit model’s significant variable coefficients for class 1.

Variable Description F/Ia NIb

Coef. t value Coef. t value

Intercept �1.0814 �5.05 0.3277 3.11
PedAge4 PedAge � 65 1.2747 3.68
PedAlcFlag2 PedAlcFlag = ’Yes’ 0.4824 1.92
DrvrVehTyp3 Heavy 1.2946 2.97
HitRun2 Hit and Run �0.8608 �1.89
AmbulanceR2 No ambulance rescue �2.2402 �5.24 �1.5076 �6.97
CrashGrp2 Crossing roadway with vehicle not turning 0.9042 3.32
CrashGrp6 Dash/Dart-Out 1.2366 3.46
CrashGrp7 Backing vehicle �2.2548 �2
Locality2 Urban �0.6561 �1.8
RdGrad2 Grade 0.4057 2.11
RdClass2 Interstate 0.8898 2.41
RdConfig3 Two-Way, Divided 1.1638 3.57 0.5615 2.52
LightCond4 Dark – Roadway Not Lighted 0.7111 2.85
Std. dev. 1.2284 1.81

Note: Number of observations: 901. Log-likelihood at convergence: �862.41. Log-likelihood (constant only): �989.85.
a F/I – Fatal/Incapacitating injury. b NI – Non-incapacitating injury.
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Table A3
Random parameter logit model’s significant variable coefficients for class 2.

Variable Description F/Ia NIb

Coef. t value Coef. t value

Intercept �1.9696 �5.98 �1.395 �4.94
PedAge2 24 < PedAge � 54 �0.6698 �3.34 �0.309 �3.09
PedAge4 PedAge � 65 0.4966 3.84
DrvrVehTyp2 Middle 0.681 3.41 0.2114 2.34
DrvrVehTyp3 Heavy 1.9061 4.97 0.6345 2.61
AmbulanceR2 No Ambulance Rescue �1.9317 �6.46 �0.9216 �8.56
CrashGrp4 Off Roadway 0.7939 2.35
Std. dev. 1.3123 2.3
CrashGrp7 Backing Vehicle 0.8114 3
CrashGrp10 Other/Unusual Circumstances 0.9622 4.6 1.3561 4.97
Locality2 Urban �0.5765 �2.05
Development2 Commercial �0.5448 �2.63 �0.4106 �4.09
RdClass5 Local Street, Driveway 0.9522 3.09 0.3767 2.32
Weather2 Cloudy �0.5732 �1.79
Hour6 0:00–5:59 1.0055 2.92 0.7169 3.92
TraffCntrl4 Double Yellow Line, No Passing Zone 2.463 1.95

Note: Number of observations: 3517. Log-likelihood at convergence: �2432. Log-likelihood (constant only): �3864.

Table A4
Random parameter logit model’s significant variable coefficients for class 3.

Variable Description F/Ia NIb

Coef. t value Coef. t value

Intercept �0.7485 �3.1 1.4015 4.23
PedAge3 55 < PedAge � 64 0.4373 2.48
PedAge4 PedAge � 65 0.9448 5.5
PedAlcFlag2 PedAlcFlag = ’Yes’ 1.2401 5.04 0.6698 2.3
DrvrVehTyp2 Middle 0.4965 4.23
HitRun2 Hit and Run �0.6081 �2.67 �0.4504 �2.4
AmbulanceR2 No Ambulance Rescue �1.8857 �8.92 �1.5342 �5
CrashGrp3 Crossing Roadway with Vehicle Turning �1.7686 �9.54 �0.5091 �3.74
CrashGrp6 Dash/Dart-Out 0.9431 3.69
CrashGrp8 Multiple Threat/Trapped 0.7118 2.47
CrashGrp9 Bus related Vehicle 0.973 2.3
Locality2 Urban �0.7269 �2.86
Std. dev. 2.1824 2.86
Development5 Farms, Woods, Pastures 3.7492 3.47 2.2967 1.71
RdCurve2 Curve 0.5734 2.5
RdGrad2 Grade 0.3173 2.17
RdClass2 Interstate �1.9342 �2.84
RdClass5 Local Street, Driveway �0.8247 �3.69 �0.7765 �2.96
RdClass6 Public Vehicular Area �2.7034 �2.64 �1.875 �2.72
RdConfig3 Two-Way, Divided 0.2928 2.29
LightCond2 Dawn/Dusk Light �0.3717 �1.66
LightCond3 Dark – Lighted Roadway 1.728 4.33
Weather4 Snow, Sleet, Hail, Freezing Rain/Drizzle 1.6402 1.92
Hour2 10:00–14:59 �0.4597 �3.21
Hour3 15:00–17:59 �0.2804 �1.98
TraffCntrl2 Signs �0.4593 �2.24 �0.4451 �2.57
TraffCntrl4 Double Yellow Line, No Passing Zone 0.9243 2.56

Note: Number of observations: 5255. Log-likelihood at convergence: �4358. Log-likelihood (constant only): �5773.
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Table A5
Random parameter logit model’s significant variable coefficients for class 4.

Variable Description F/Ia NIb

Coef. t value Coef. t value

Intercept �1.7074 �8.05 0.3974 3.75
PedAge2 24<PedAge � 54 0.28 2.27
PedAge3 55<PedAge � 64 0.6125 3.44
PedAge4 PedAge � 65 1.1367 5.39
PedAlcFlag2 PedAlcFlag = ’Yes’ 0.7554 6.28 0.365 3.1
Std. dev. 1.3175 1.93
DrvrVehTyp3 Heavy 1.0348 2.8
HitRun2 Hit and Run �0.4551 �2.08
Std. dev. 1.5665 1.88
AmbulanceR2 No Ambulance Rescue �1.3145 �8.11 �1.1283 �9.9
CrashGrp2 Crossing Roadway with Vehicle Not Turning 0.8225 5.94 0.2264 2.21
CrashGrp3 Crossing Roadway with Vehicle Turning �1.4071 �5.24 �0.6261 �4.98
CrashGrp5 Pedestrian in Roadway 0.7605 4.16
CrashGrp6 Dash/Dart-Out 0.9161 4.9 0.4135 2.88
CrashGrp7 Backing Vehicle �0.843 �2.81
CrashGrp9 Bus related Vehicle 1.317 2.17
Development2 Commercial 0.3504 3.08
Development4 Institutional �0.6541 �2.42
RdCurve2 Curve 0.717 3.13
RdGrad2 Grade 0.5511 4.07
RdClass5 Local Street, Driveway �0.7426 �5.06
RdClass6 Public Vehicular Area �1.2944 �3.36 �0.7613 �2.59
RdConfig2 Two-Way, Not Divided �0.3195 �3.71
RdConfig3 Two-Way, Divided 0.7398 6.45
LightCond4 Dark – Roadway Not Lighted 0.4588 3.98
Weather2 Cloudy 0.534 3.74
Hour3 15:00–17:59 �0.9898 �3.06
Hour5 21:00–23:59 0.2262 2.56
Hour6 0:00–5:59 0.6473 5.02 0.3936 3.34
TraffCntrl2 Signs �0.3854 �2.59
TraffCntrl4 Double Yellow Line, No Passing Zone 0.6512 1.99

Note: Number of observations: 3630. Log-likelihood at convergence: �3361. Log-likelihood (constant only): �3988.
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