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A B S T R A C T

The oil tanker shipping market always presents periodicity following varied laws in different periods. However,
most of the studies on the tanker freight rate market are short-term projections, while those on its long-term
periodicity characteristics are mostly qualitative ones. In order to study the periodic variation law of the tanker
market, this paper uses quantitative methods to figure out the cycle duration and amplitude of different scales of
Aframax tanker's freight, and predicts the long-term variation trend of freight rate on that basis. This paper
selects the one-year charter freight rate of Aframax tankers (110,000 DWT D/H) to comprehensively analyze the
Aframax tanker freight market variation law, and further divides the cycle into three major categories. With the
help of wavelet analysis, this paper quantifies the periodic volatility of the Aframax tanker shipping market, and
figures out a quarterly cycle of 11.2 months, a short-term cycle of 3.7 years, and a medium-to-long-term cycle of
11.9 years. Based on the cycle characteristics, the paper predicts the market cycle trend to the next medium-to-
long-term cycle and further to the year 2030, so as to offer some reference to oil tanker shipping market players
for better decision-making.

1. Introduction

Crude oil, as an important source of energy, has been regarded as a
crucial input in the process of economic growth [1]. As the derived
demand for international trade, the crude oil marine shipping market
both serves international trade and reflects the development and ten-
dency of the international economic environment [2]. Out of energy
cost considerations, there have been many studies on the future trend of
the crude oil shipping freight rate and its dynamic and volatile char-
acteristics [3–5]. However, these predictions seldom took into account
the periodic characteristics of the tanker freight rate and the implica-
tions of many complex factors on the tanker freight rate such as the
crude oil price and shipbuilding price. There have been few studies on
quantifying the periodicity of tanker freight rate of different time scales
[6,7].

During the 2008 financial crisis, the international crude oil price
plummeted by 73% through a short period of five months, from the
high of $150/barrel in July 2008 to less than $40/barrel in December
2008. The international crude oil price remained below $70/barrel in
March 2018. The three oil crises in history have had a huge impact on
the supply and demand as well as the prices of international oil pro-
ducts, and the impact was further carried to the tanker freight market.
The adjustment of market supply and demand on the time scale is ex-
hibited in the form of periodic fluctuations of tanker freight rate [8].
Meanwhile, considering the weak recovery of the world economy in
recent years coupled with a large number of new tankers built or or-
dered before the outbreak of the international financial crisis, excessive
shipping capacity supply resulted in a significant depression in the
tanker freight rate [3]. Enterprises closely related to tankers, such as
shipyards and ship companies, will make tanker charter as well as
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tanker manufacturing and dismantling decisions based on changes in
tanker freight rate. Therefore, the importance for entrepreneurs and
policymakers to make an accurate forecast of tanker freight volatility
and dynamicity cannot be exaggerated.

International tankers can be divided into six categories by dead-
weight: general-purpose, Handymax, Panamax, Aframax, Suezmax
tankers and supertankers. Aframax ship is designed based on the
Average Freight Rate Assessment (AFRA), with ship deadweight ton
design based on the best revenue point of freight income and cost.
Therefore, the Aframax ship is also called “freight ship”. Because of
draught restrictions of port facilities, the ports of many oil-exporting
countries find themselves hard to receive Very Large Crude Carriers
(VLCCs), while Aframax tankers are widely used in the Black Sea basin,
the North Sea, the Caribbean, Chinese sea areas and the Mediterranean
Sea. For this reason, the international tanker market has a great de-
mand for Aframax vessels. In view of the versatility and economical
efficiency of this ship type, this paper chooses Aframax tanker freight
rate to study the cycle characteristics of the tanker freight rate market.

A significant majority of research focuses on forecasting the freight
rate trend. Many prediction techniques, such as statistical regression
model, represented by ARIMA and ARCH [9], heuristic algorithm, re-
presented by neural network [10,11] and genetic algorithm [4] have
been used to forecast the shipping market. Munim & Schramm [9]
forecast the container shipping freight rate with the ARIM-ARCH
model, with the results providing comparatively better outcome than
existing freight rate forecasting models, performing short-term forecasts
on a weekly and monthly basis. However, the ARIM-ARCH model is not
suitable for long-term forecasting as freight rate exhibits multiple per-
iodicity features. von Spreckelsen et al. [12]. investigated the perfor-
mance of linear and non-linear prediction methods for tanker freight
rate, and found that non-linear methods such as neural networks are
suitable for short-term forecasting and trading of the freight rate.
Nonetheless, most of the aforementioned forecasting methods are ap-
plicable to short-term forecasts of freight rate, and related studies on
the long-term trend and periodicity characteristics of the market are
necessary to make long-term forecasts.

Some researchers attempted to understand the time-varying char-
acteristics of freight rate volatility by focusing on some of its influence
factors [13]. Other researchers have attended to the correlation and
influence mechanisms between markets and influence factors [14–16].
Chen et al. [2] studied the multifractal cross-correlations between the
crude oil price and tanker freight rate employing the Multifractal De-
trended Cross-Correlation Analysis (MF-DCCA), and they found that the
strength of multifractality after the financial crisis was larger than that
before. The periodic characteristics were also considered for predicting
market tendency. Kavussanos and Alizadeh-M [17] investigated the
seasonality of dry bulk freight rate, measuring and comparing it across
freight rates of different vessel sizes. Their results illustrated that spot
rates for larger vessels exhibited higher seasonal fluctuations than those
for smaller ones, and they attributed asymmetries in seasonal fluctua-
tions in freight rates over different market conditions to the high and
low elasticities of supply. Sun et al. [6] studied the multiscale corre-
lation between freight rates and oil prices based on the ensemble em-
pirical mode decomposition model, the results showed that tanker
freight rates and oil prices exhibit different multiscale properties and
were significantly correlated in the medium and long term. Despite the
research on tanker freight volatility and forecasts in many studies, the
time-varying, non-linear and local non-stationary features of freight
rate make modeling of its inherent dynamics a challenging task.

When studying periodic characteristics of the shipping market,
Stopford [18] divided the shipping market cycle into four phases: the
trough phase, the recovery phase, the crest phase and the decline phase.
The results proposed three kinds of cycles in the shipping market: a long
cycle (60 years), a short cycle (5–10 years), and a seasonal cycle (less
than 1 year). However, these cycle durations were not worked out using
quantitative methods. Gkochari [19] analyzed a dataset of the Capesize

shipping market based on option games that helped to explain the ex-
istence of boom-and-bust cycles in shipping. Goulielmos and Siropoulou
[20] used the rescale range analysis method to calculate the duration of
cycles manifested in the prices of second-hand tanker ships, finding the
existence of two cycles of tanker ship prices with durations of four and
eight years, respectively. Those results are, of course, preliminary;
much more data is required to test their forecasting validity, and this
should be regarded as just a starting point in this provocative area of
research. Randers and Göluke [21] predicted the turning points in
shipping freight rate and explained the world's shipping market cycles
as balancing feedback loops: a capacity adjustment loop and a capacity
utilization adjustment loop. Papailias et al. [22], for example, in-
vestigated the BDI with comprehensive forecasting performance eva-
luation methods, finding that there existed a strong pattern of cycle
duration of between three and five years, and that this pattern was
relatively stable across time. However, these results vary greatly due to
the complexity of influencing factors in the shipping market. Yin and
Shi [23] analyzed the seasonality patterns of container shipping freight
rate and the results revealed that regular seasonality fluctuation pat-
terns are within a one-year period. However, the study failed to look at
the cycles on other time scales.

Despite a large number of studies on identifying and forecasting the
influencing factors of tanker freight rate, there remains a dearth of
precise quantitative studies, especially for the tanker freight cycle.
Since empirical methods fail to meet these requirements, a quantitative
study of periodic variations should be introduced to lend guidance to
enterprise decision-making. This paper followed the practice of dividing
the cycles by three different time scales in order to analyze the market
periodic characteristics more precisely. We used wavelet analysis,
which is particularly suitable for the time-frequency scale of data, to
focus on features of tanker freight cycle (especially the cycle duration).
We obtained the periodic characteristics of tanker freight rate from
relevant wavelet coefficient curves to analyze the periodic character-
istics of the original data. Then we reconstructed the wavelet coefficient
curves with different variation features to characterize the periodic
variation on three different time scales. Our contributions can be de-
scribed as follows:

(1) Unlike those studies focusing on periodic characteristics on just one
time scale, this paper divided the cycles by three typical time scales
look into different cycles' features. This enables a more accurate
way to describe the long-term periodic variation trend of Aframax
tanker freight rate; (2) This paper adopts quantitative methods to
calculate the duration and amplitude of Aframax tanker freight rate
on varied time scales and forecasts the long-term trend of freight
rate on that basis; (3) This paper establishes a theoretical basis and
framework for analyzing periodic variation features of tanker
freight rate using wavelet analysis and gives guidance to decision-
marking of tanker shippers and policy-makers.

The rest of the paper is organized as follows: Section 2 describes the
wavelet analysis method; Section 3 introduces the data; Section 4 dis-
cusses the wavelet analysis results and forecasts the periodic variation
and tendency in the next medium-to-long-term cycle. The conclusion is
provided in Section 5.

2. Methodology

Wavelet analysis was proposed by Morlet et al. [24] and received
wide application in time series data research such as geography, cli-
mate, medicine and finance [25]. Some traditional methods such as
ARIMA and VAR models require data to be stable, with the residual
signal being white ones [26]. When looking into the inherent com-
plexity and mutability mix of original data, Li et al. [3] used the de-
composition hybrid approach to divide the original data into a series of
relatively simple but meaningful components following the
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“decomposition and ensemble” principle. Wavelet analysis is capable of
decomposing time series into trend, cycle and noise [27], and thus we
can use it to indicate the periodic variation features in the original data
on different time and frequency scales so as to provide theoretical
support for forecasting market variations.

Unlike the Fourier analysis which involves frequency analysis only,
wavelet transform scales and translates the mother wavelet function to
generate a series of derived wavelets and then uses the wavelets to
translate and compare the to-be-analyzed signals on the time axis to
work out the wavelet coefficient that represents the degree of similarity
between a signal and a wavelet [28]. Wavelet analysis overcomes the
shortcomings of Fourier analysis the transform window size of which
fails to vary with frequency in a short term and lacks a discrete or-
thogonal basis. Therefore, wavelet analysis can be used to analyze the
time domain and frequency domain of data [29]. Since the monthly
freight rate of Aframax tankers is subject to the influences of periodic
factors dominated by oil prices, which renders similar periodic fluc-
tuations into freight rate, and random influences of other non-periodic
factors, such as employee wages, port service charges and navigation
fees, we need to separate the low-frequency layer representing the
periodic characteristics in the raw data from the high-frequency layer
representing the non-periodic characteristics when analyzing periodic
characteristics of freight rate data. The features of wavelet analysis
make it well fit the requirements.

Accordingly, with the help of wavelet analysis, we studied the
periodic variation characteristics of Aframax tanker freight to re-
construct the low-frequency layers within three time-scale cycles.

2.1. Wavelet analysis

The wavelet analysis is a kind of time-frequency analysis, which is
developed based on the foundation of Fourier transform. Fourier
transform could well decompose a function of time f t( ) into its con-
stituent frequencies and its formula is defined as:

∫=
−∞

+∞
−F ω f t e dt( ) ( ) iwt

(1)

In the formula, ω is the frequency, t is time. F ω( ) is the Fourier
transform of the time series function f t( ). −e iwt is the complex variables
functions.

A wavelet transform is the development and extension of the
Fourier transform. However, unlike Fourier transform which only in-
volves frequency-domain translation, wavelet transform can translate
the time-domain and frequency-domain at the same time [30]. Wavelet
analysis approximates the original function by scaling and translating
the mother wavelet function. The mother wavelet function Ψ(x) is a
square-integrable spatial function, x is the time variable, that is,

∈ψ x L R( ) ( )2 .ψ θˆ ( ) stands for the Fourier transform form of ψ x( ), θ is the
frequency,. ψ θˆ ( ) satisfies the following admissible conditions:

∫< < ∞
ψ θ

θ
dθ0

ˆ ( )

R

2

(2)

∫= = =
−∞

+∞

ψ θ ψ x dxˆ ( 0) ( ) 0
(3)

The wavelet sequence from translating and scaling the mother wa-
velet is also called daughter wavelet., which could be defined as:

= ⎛
⎝

− ⎞
⎠

∈ ≠ψ x
a

ψ x b
a

a b R a( ) 1 , , , 0a b,
(4)

In the formula, ψ x( )a b, indicates to scale the wavelet function ψ x( )
by a times and translate it by b units. a is the scale factor that scales the
mother wavelet, a could stretch and shrink the mother wavelet in time.
When |a|> 1, it indicates to scale up the mother wavelet, and when
|a|< 1, it indicates to scale down the mother wavelet. b is the

translation factor that translates the mother wavelet. In this way, a
could rescale the center frequency of the mother wavelet. When b > 0,
it indicates to shift the mother wavelet right, and when b < 0, it in-
dicates to shift the mother wavelet left. In this way, the wavelet
transform can translate both time-domain and frequency-domain.

When a, b are continuous values, the f(x) continuous wavelet
transform (CWT) in L2(R) is defined as:

∫= = ⎛
⎝

− ⎞
⎠

∗

−∞

+∞
∗W f a b f x ψ x

a
f x ψ x b

a
dx( , ) ( ), ( ) 1 ( )x ψ a b, ,

(5)

In the formula, W f a b( , )x ψ, is the wavelet coefficient. With the
formulas of CWT above, The wavelet analysis is a measurement of the
similarity between the daughter wavelets and the origin signal function.
The coefficients calculated indicate how close the function is to the
daughter wavelet at that particular scale a.〈⋅〉denote the inner product.
ψ* is the complex conjugate of ψ. 〈f, ψ〉= (1/2π)〈F̂ , ψ̂〉, where F̂ is the
Fourier transform of f. So CWT W a b( , )f ψ, could be written as:

∫=
−∞

+∞
∗W a b

a
ψ aθ F θ e dθ( , )

2π
( ) ˆ ( )f ψ

iθb
,

(6)

It should be noted that in Formula (6), b is the time dimension,
which is a location parameter. a stands for the scale dimension, in-
dicating that W a b( ,f ψ, ) is the time-scale representation of f(x). Mean-
while, we can conduct continuous wavelet analysis through vector
centralization to represent the inverse relation between scale and fre-
quency [30].

The inverse wavelet transform of f is given by Daubechies [31]:

∫ ∫=
−∞

∞ ∞
−f b

C
a W f a x ψ b da dx( ) 1 ( , ) ( )x ψ a b

0

2
, ,

(7)

In the formula, C is a constant. Formula (7) can be regarded as a
process of reconstructing the original function f(x), that is, when the
wavelet transform W f a b( , )x ψ, is worked out, f(b) can be regarded as
superposition of the daughter wavelet ψ x( )a b, .

When a, b are uncontinuous values, we can obtain the discrete
wavelet transform (DWT). When discretizing the scale and location
parameters (a, b), a can be chosen as a m

0 , where m is an integer and
>a 10 . Meanwhile, one can choose =b nb a m

0 0 , where whether >b 00
depends upon Ψ(x) and n is an integer [32]. Then we define:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

= −− −ψ x
a

ψ
x nb a

a
a ψ a x nb( ) 1 ( )m n m

m

m
m m

,
0

0 0

0
0

/2
0 0

(8)

When Ψ (x)m,n is obtained, the DWT can be shown as:

∫= −− −Wf m n a f x ψ a x nb dx( , ) ( ) ( )m m
0

/2
0 0 (9)

Wavelet analysis can obtain high- and low-frequency signal layers
by changing the scale factor a and b. As shown in Fig. 1, the original
time series data is introduced in the data description part, and the
wavelet decomposes the original signal S into a low-frequency layer an
and a high-frequency layer dn, that is, = + ∑ =S a di i

i
i1 The original

signal can be decomposed into a linear combination of wavelet coeffi-
cient function (scale function) and wavelet function. In this function,
wavelet coefficient function generates low frequency part and wavelet
function generates high frequency part. As the wavelet coefficient
functions (wavelet coefficient curves) obtained by the wavelet analysis
has the same frequency as the original signal, in this case, we could
obtain the periodical features of the original data [25].

The choice of the wavelet function Ψ(x) is not unique or arbitrary.
Ψ(x) should have unit energy, that is, ∫ =Ψ x dx| ( )| 12 . Meanwhile, it
should have compact support to be able to attenuate to the position in

space fast enough. Besides, it has zero means, that is, ∫ =
−∞

∞
Ψ x dx( ) 0.

Therefore, there are many eligible wavelet functions available, such as
Mexican hat, Haar wavelet and Daubechies wavelet [31]. In usual
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cases, scholars filter available wavelet functions based on the basic
characteristics, and verify the validity of the selected wavelet function
through experiments.

This paper chose Daubechies wavelet, which was proposed by
Daubechies [31], as the mother wavelet function. dbN (N is the van-
ishing moment) has no definite functions except db1, which is the same
as the Haar wavelet function which can be written as:

=
⎧

⎨
⎪

⎩⎪

≤ ≤

− ≤ ≤ψ
x

x
else

1,0

1, 1
0,

H

1
2

1
2

(10)

Main characteristics of the dbN wavelet function include: (1) an
effective support width of 2N-1; (2) a vanishing moment of N; (3) being
asymmetrical, orthogonal, compact supported and biorthogonal.

3. Data description

In this paper, we selected standard Aframax tanker for research.
This type of tanker has a small volume and is admissible at most ports.
What's more, it is generally designed centering around the best revenue
point of freight revenue and cost, hence representative of typical freight
tankers in international tankers. As the modern Aframax tanker
(110,000 DWT tanker from start April 2000) has took the place of the
old Aframax tanker (95,000 DWT early 1990s built tanker this paper is
based on the monthly one-year time charter freight rate data ($/(Day),
and get the per 10000 DWT freight rate ($/(Day*10000 DWT) of a total
of 518 groups of Aframax tankers (95,000 DWT tanker from Jan 1976
to Mar 2000 and 110,000 DWT tanker from April 2000 to Feb 2019) in
the database of Clarkson SIN, as shown in Fig. 2.

4. Results and discussion

4.1. Selection of wavelet function for Aframax tankers

Previous research unveils cycles on three time scales for the dry bulk
carrier market [18]. Many studies also pointed out that oil price ex-
hibits periodicity [33]. The wavelet analysis used in this paper can help
locate signals of both low-frequency layer and high-frequency layer of
the tanker freight rate. The low-frequency layer is selected for analyzing

the volatility periodicity characteristics of the tanker freight rate.
However, different wavelet functions may lead to different processing
results. Main wavelet functions which have orthogonality and were
currently used include Haar, symN, CoifN and dbN wavelet [34,35]. In
view of the time and frequency requirements of the cycles studied in
this paper, we combined the reference and experimental data to select
the wavelet function as there has no standard method to choose the
wavelet function.

This paper follows two main criteria to choose the best wavelet,
first, the low-frequency layer obtained after the wavelet transform is
required to be smooth to a certain extent to facilitate calculation of the
vibration cycle step size and could reflect variation features of the
original data. Second, it might have boundary problem if the wavelet
function's support length is too long, and it might cause low vanishing
moment, which would cause the dispersion of signal energy, if the
wavelet function's support length is too short. Hence, this paper chose
the wavelet function whose support length is in the range of 5–9.
During function determination experiment, the original signal was de-
composed into 3 layers and vanishing moment N was 4, The low-fre-
quency layer a3 was chosen for comparison and the results are shown in
the Fig. 3 and Table 1.

As shown in Fig. 3, the result of db4 and coif4 could well reflect
variation features of the original data. while this paper chose the db4 as
it has more suitable support length as shown in Table 1. As the van-
ishing moment N could choose from 1 to 6 (N larger than 6 might not
satisfy the support length requirement), in a bid to identify the best
vanishing moment N, this paper decomposed original signal with dif-
ferent dbN wavelet functions (N=1 to 6) to figure out the corre-
sponding low-frequency layers. Fig. 4 shows the comparison of the low-
frequency layer a3 with the original signal layer. Table 2 shows the
standard deviation (STD) results of different dbN wavelet functions in
three low-frequency layers.

When the vanishing moment N of the wavelet function increases,
the a3 low-frequency layer curve is smoother, and data stability is also
improved significantly. As shown in Fig. 4, db4's low-frequency layers
after removing the high-frequency layers are smooth enough and can
better reflect the periodic volatility of the Aframax Tanker Freight data.
Table 2 shows db4 has better STD performance than any other dbN. In
this case, this paper chose db4 as the mother wavelet.

Fig. 1. Illustration of the wavelet decomposition process.

Fig. 2. Aframax Tanker's freight per 10,000DWT ($/Day∙10,000 DWT).

J. Chen, et al. Energy Strategy Reviews 25 (2019) 47–55

50



4.2. Forecasting Aframax tanker freight cycle duration based on one-
dimensional continuous wavelet analysis

One-dimensional continuous wavelet analysis on monthly freight
rate data of Aframax tankers helps us get the wavelet coefficients and
wavelet coefficients map is showed in Fig. 5. The map features typical
light and dark interval variations, which shows the extreme values of
the wavelet coefficient curves (WCCs) at different scales (ordinate), and
the interval distance increase with the scale (ordinate) goes up, which
manifests different cycle length of the Aframax tanker freight as the
WCC has the same periodical feature as the original signal. This paper
obtained the cycle lengths from the mean interval distances of WCC's
extreme values (local maxima and local minima), and chose the cycles
from the WCCs whose extreme values' distances have the stable values
and low STD, the results are shown in Fig. 6.

In Fig. 6, we can see different interval's mean values in different
scale ranges. There are scale ranges where the interval's mean values
have huge variations, and they mean that the cycle lengths are inter-
fered by different types of cycles. These parts are corresponding to the
parts in Fig. 5 where the WCC's extreme values are interconnected, and
these cycles are instable and should be excluded. Meanwhile, in the
scales where intervals have stable mean values, the mean interval va-
lues calculated by the local maxima are larger than values calculated by
the local minima, which means the cycles' wrests' distances are always
larger the distances between the troughs. This characteristic is con-
sistent with the phenomena of Aframax tanker freight market, whose
cycles' depression and recovery periods are always larger than the boom
and bust periods.

In this paper, the intervals with stable values and low STD within a
certain range of scales were regarded as the typical cycle of the Aframax
tanker freight, and it could be found that there have four ranges of
scales where the intervals have stable mean values and low STD, and
these intervals could be concluded into 3 typical cycles, namely the
short-term cycle, the medium-to-long-term cycle, and the long-term
cycle. The results are shown in Table 3.

By selecting the ordinate values with the smallest STD between
interval distances in different scale values, we can get the

corresponding cycle lengths and wavelet coefficient curve. As shown in
Table 3, in the short-term cycle range (scales from 31 to 45), the in-
terval distance's STD of the wavelet coefficient curve on the 35 scale is
the smallest. If we use the cycle value of the curve as the one for the
short-term cycle range, we can work out the cycle of the wavelet
coefficient curve is 41.2 months (or 3.45 years). In the same approach,
we can work out the medium-to-long-term cycle values of 85.3 months
(or 7.11 years) on the 65 scale and 107.6 months (or 8.97 years) on the
86 scale, and the long-term cycle value of 143.5 months (or 11.96
years) on the 147 scale.

4.3. Prediction and analysis of Aframax tanker freight rate cycle

This paper chose the corresponding WCCs to represent different
cycles of Aframax tanker freight, we used the ARIMA method to extend
the four wavelet coefficient curves, which have been normalized, from
Mar. 2019 to Feb. 2032 according to the corresponding periodic char-
acteristics to the next long-term cycle – the year 2032, and super-
imposed the wavelet coefficient curves on the four scales to get an
accumulated wavelet coefficient curve that can represent and predict
the volatility characteristics throughout the entire cycle, as shown in
Fig. 7.

(1) The predicted short-term cycle of Aframax tanker freight is 41.2
months (or 3.45 years), which mirrors the short-term periodic
fluctuations of the market. According to Fig. 7 (b), the Aframax
tanker freight was on a decline in Feb 2019. It sustained the low
level until the trough in Jun. 2019, followed by a recovery which
led to a peak of the short-cycle growth around Apr. 2021. Also, the
following troughs nad crests are shown in Fig. 7 (b).

(2) The predicted medium-to-long-term cycles of Aframax tanker
freight rate are 85.3 months (or 7.11 years) and 107.6 months (or
8.97 years), which are primarily embodied in the stage between the
short-term cycle and long-term cycle. As shown in Fig. 7 (c), the
Aframax tanker freight would come into the trough around Dec.
2019 and would come into the next crest around Mar. 2022 ac-
cording to the first medium-to-long-term cycle. Also, according to
the second medium-to-long-term cycle which is shown in Fig. 7 (d),
the Aframax tanker freight would come into the trough around Jul.
2020 and would come into the next crest around May 2025.

(3) The predicted long-term cycle of Aframax tanker freight in this
paper is 143.5 months (or 11.96 years), Also, the Aframax tanker
freight is now at the end of recovery stage and would come into the
long-term cycle's trough in around Aug. 2020, and would reach the
next crest around Jan. 2027 as showed in Fig. 7 (e).

Fig. 3. Comparison of the a3 Layer After Different Wavelet Transform.

Table 1
Performance of different wavelet functions.

Wavelet function db4 Haar Coif4 Sym4

Standard deviation 100.00 155.72 102.58 120.88
Support length (N=4) 2N-1= 7 1 6N-1= 23 2N-1= 7
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As the Aframax tanker freight's variations were affected by the total
influence of all different cycles,.this paper combined the superimposed
wavelet coefficient curve with the original Aframax tanker freight curve

for analysis. The results are shown in Fig. 7 (a). The superimposed WCC
is consistent with the peak and trough stage of original Aframax tanker
freight curve from 1976 to 2019. The year 2007 saw the subprime
mortgage crisis when the amplitudes of various cycles experienced
certain degrees of decline, signaling the start of the decline phase of the
long-term cycle. In the light of the analysis of the aforementioned cycles
on three different timescales' cycles and considering all cycles' influ-
ence, the Aframax tanker freight rate is in the medium-to-long-term
cycle recession which may continue until around 2020 before it enters
the recovery. After the recovery, the growth is expected to continue to
2025. In view of this, the current general trend of the market will
continue to face pressure to reduce the excess shipping capacity. As a
result, the market fluctuation amplitude is small, presenting a slowly
shrinking trend.

Fig. 4. Wavelet Decomposition of Aframax Tanker Freight Through dbN (N= 1to6).

Table 2
Performance of Different dbN Wavelet Functions.

Standard deviation a1 a2 a3

db1 52.99 101.18 155.72
db2 38.26 80.89 111.72
db3 34.97 62.36 124.11
db4 32.30 59.14 100.00
db5 29.73 71.99 116.99
db6 28.17 64.02 101.28
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5. Conclusion

This paper analyzes the periodic characteristics of the oil tanker
shipping market and its influencing factors employing the monthly one-
year time charter rate of Aframax tankers. First, we use wavelet analysis
to study the periodic variation laws of tanker freight rate on three time-
scales. From the analysis, we predicted the corresponding cycle dura-
tions on the three time-scales, namely the short-term cycle, the
medium-to-long-term cycle, and the long-term cycle. Second, according
to the predicted cycles, the paper forecasts the future fluctuation trend
of the Aframax tanker market. The following conclusions can be made:
(1) The short-term cycle of the market is 41.2 months (or 3.45 years),
the medium-to-long-term cycles are 85.3 months (or 7.11 years) and
107.6 months (or 8.97 years), and the long-term cycle is 143.5 months
(or 11.96 years); (2) The superimposed wavelet coefficient curve en-
abled us to know that the Aframax tanker freight rate market entered
the recovery of the short-term cycle in around Jun. 2019 and reach the
short-term cycle crest in around Apr. 2021. What's more, the Aframax
tanker freight rate market comes into the medium-to-long-term cycle
trough in around Dec. 2019 to Jul. 2020, and would come into the next

crest in around Mar. 2022 to May 2025. Furthermore, the Aframax
tanker freight rate market is likely to come into the recovery phase of
the long-term cycle from Aug. 2020, and would reach the next crest in
around Jan. 2027.

The periodic characteristics of the Aframax tanker freight rate
market studied in this paper can offer a reference for tanker market
players to learn the future market trends. These periodical features can
help entrepreneurs to have a better understanding of the volatility of
the Aframax tanker freight rate market, and guide decision-making
regarding Aframax tanker market investment and ship purchasing. At
the same time, the results of this paper can also help the administrative
authority to formulate policies that can better respond to the changes in
the tanker timed-charter market. For example, they can roll out tax
policies that better answer to the tanker timed-charter market based on
the periodic laws, that is, cutting down taxes when the tanker freight
rate market is on a decline to encourage the sustained development of
the tanker market. Moreover, in view of the influences of the crude oil
futures prices on the tanker freight rate, the study on tanker shipping
market periodicity can, to some extent, mirror the future trend of the
market as crude oil acts as an important energy source for industrial

Fig. 5. Wavelet coefficient map of monthly freight rate of Aframax tankers.

Fig. 6. Mean values and standard diviations of different scales' wavelet coefficient curves' extreme Values's interval length.

Table 3
Three different types of Aframax tanker Freight's cycles.

Cycle type Scale range Cycle length
Unit in month or (in year)

Scale at (minimum STD) Cycle length
Unit in month or (in year)

Short-term cycle 31–45 41-45 (3.42–3.75) 35 (7.21) 41.42 (3.45)
Medium-to-long-term

cycle
65–85 85.3–85.9 (7.11–7.16) 65 (28.27) 85.3 (7.11)
86–118 107.3–107.6 (8.94–8.97) 86 (10.99) 107.6 (8.97)

Long-term cycle 119–206 142.3–144.2 (11.86–12.02) 147 (27.35) 143.5 (11.96)
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production and its price volatility will inevitably lead to volatility in the
entire market.

This paper uses wavelet analysis to study the periodic volatility of
the monthly one-year time charter rate of Aframax tankers, and predicts
the future cycle variation trend of the market. It draws the macro law of
periodic variation in the market. Since the tanker freight rate is subject
to the combined influences of periodic and non-periodic factors, we
need to carry out further studies on the mechanism that various influ-
encing factors act on the tanker freight rate periodicity and volatility to
better learn how the tanker freight rate periodicity and volatility come
into being.
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